
#Machine learning
So for we tried to design algorithms &

ansaft classes to either estimate observables or to

directly represent/approx. the state. Machine

learning is (im some sensel a combination

of both ideas.

Consider a system which
may

be controlled
U

by a set of parameters & ER (n=NN).

An experiment is than the measured response

of the system 1tR" to same exp.prove
-

dure. Let us assume their exists a

function which predicts the outcome I, given

X:h(x) =1. Cleary, h depends on the

systems properties, which specify its state.
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In the following, we assume that the

state can be parametized by a set of

variables & eR* (k-IN). Then we can

pose the following question:

can we find he(*) & a set to such,

that dist(ke(x),h(X)) =min?

Note:

(i) The function hlx) introduces a parame-

dization of the functional dependency bet

ween 1&1, i.e., a model.

(ii) The set of variables to then this to

fit Re data Xdo Igiven the model

ha(x) as best as possible.
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III. 1supervised learning

Let us consider an example:The price of a

house. Let Ibe information about houses,

e.g.
The squared area

I X,

the ur. of bedrooms Xu

Anaive model for the predicted price y
=ho(x)

would be:

ha(x) =21 =0 +0,x, +4Xz

with a =10,0,81 & 1 =(1 xxz).

Questions:

(i) How to optimize I to get dist(he(x), h(A)

minimal?

(ii) Why should hell) be a good models



after all?

Regression methods (a small excerpt)

Machine learningis, to a

very high degree, solving
optimization problems, so we need a dool-

box!

We consider a set of ralizations (****) with

me31, ..., M3 & try to fit from this "training
set"the optical model parameter opt.

Least mean squares (LMS)

We consider the cost function:

3(2) =(hax" - yM)

& use gradient descent to generate a

seq. of
model parameter EK:

N



2x x
=Ex - xeJek

when a 30 is called Rarning rate.

The update rule can be rewritten using

%26 =2 ej
j =1

=es(2x - x)(w=x - y)
E

= eit-4xj.

For the mothe realization we then choose:

Em=Fm
+a(y|m) - at.M)*x)

This can be repeatedly applied to the M maining
samples (x), y(') atcost ed(r) per iteration!
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Remarks:

. The updates Im-Ex can be defined by
iterating over all M samples from the training
set (batch gradient descent):

3() =(y -21M)

·The updates Emt Ente can be defined by ito-
N

aling over a wandowly chose subset {(**, **31
of NEM samples from the trainin set

(Stochastic gradient descend):

I(2) =t(y(m) -ax)

·J) is quadratic in2 & tus minimizing
w.r.d. I always gives the global minimum!

This is a consequence of the model held)!

Locally weighted LMS

What happens if the training set is more

complicated but we still believe in our

model he(1) up to small corrections? ⑫



y
Ibest expected fit

" =undorfitting
I

- X
-E over fitting

We add a feature map 4(X) such that

y(x) =(1x,x2)

& introduce local weights woll

3() =Ic()(y() - aty(x))
where the weights willI can be used to fit

ety(x) only ina neighborhood of 1:

w((x) =e
2*)

Consequences
i) now is depends on the point we want
to predict

ciil we need the trainingdata the whole time

siiit we automatically suppress
too

many features
⑬



Newbon - Rophson

we look for lopt such that Geflops
=

0.

Let us consider a quadratic function f:R+i

for simplicity:

Y

gix) =j'.x +yo
with g' =8 le

A

Y-
jix
- -

-
=>y

=

y
- fre

Ko -X

We now determine to from g(X0) =0:

0 =f(x - 0) +yx =0 - y =0-f
we thus can perform the update:

a
=-

=a-
For rectors this translates to:

⑭



E =- (E3]e)"Fede

with the Hesse matrix:

8 ...
#[3]=I08... I

Remarks:

(i) Newton-Raphson method dypially converges

much faster since (Eun-fu)an,i
the learning rate a from LMS is replaced

by model dependent quantity

ii) Newbon-Raphson requires evaluation of #[I]
which can be costly! Also the scalingwill
the number of features is -OSY

⑮



probabilistic modelling
We now durn back to the question why we

expect ha(x) =04. Ashould be a good
model function.

Consider for each sample (X"y") inthe training set

He error (resideal):

y(m) - 4(x)) =((m)

Leb us make the assumption that the

errors ((m) are independently & identically
distributed according to a ganssian disti-
bution: -(sin],z

plain) =re

=>plyMxY) =e
Read ply/x,o as prob. to predict y(m) given
x
m) if we fix the parameters I. ⑭



Then we get for the joint prob of the errors

of all training sets:

(2) =p(y"(X,z)

p(yIx)
A

-
·y- XR

->We want to find a such that the prob to have

arrows alm) as small as possible, i.e., we
want

to maximite the Likelihood function (IE).

Equivalently, we can extremite F(L(2) for

any shictly monotonically increasing function

F(x). Led us choose F(x)=log(X):

Sopt
=

argmax log(((()
⑭



=S rlog(L()) =0

=0 =r, log(p(yXm),e)) for all jeting

--- l(255)

=>0 =

- ,2*(y() -p!((n)
-

And thus we arrived just at our linear

model with he() =at1& cost function I(E)

which needs to be minimized!

Remarks:

(i) we can still choose feature vectors y (X) such

Ma6 y(X) =(1 x, x, ...) contains higher
orders inXj.

(ii) This is valid only if the errors are

s



uncorrelated! Situations with (99)F0 can
occur if for mistance hidden features (i.e.

missing parameters xi) affect predictions.

Logistic regression
So for the output (rector) was read. What happens,

if we want to make a decision (Classification)?

Example:

We want to learn to distinguish lemons

from oranges:

lemous have alliptic cross section
**

lemous are mostly yellow

oranges
have spherical crosssection

⑰
oranges are mostly orange

Choose niput:X. Ellipticity of cross section

Xz
=Color scheme value, e.g.

C =0 =nd

C =1yellow

⑭



C
R

1 - X X separatione Identification of training
x* X

x X data:

x
X

x=Lemon :y =0

X X X

xX

I >E x=Prany:y
=1

1

we try to learn the separation line by

approximating the binary output y with

the logistic (signoid) function:

*1 g(x)

g(x) =Fe- x -

We then choose our model as:

ha(x) =g(atx) =g(n)

-
We need for any optimization the

devirative:
⑩



88 =68 =(1 -44 x;

unig:
- X

8 =8x(1 +2x
1

=2-

x2

-er x
= (1-g(x),

We now assume again that we can assign

probabilities to the outcomes of our learning
strategy:

P(y =11;) =bo(X) 34(y =0(1,2) =1 -4(x)P(y*,) -haa))")
-2x)

Then, the Likelihood is simply:

LIE) =F, ply",x; E)
Maximizing LIE) is again equivalent



to max. log ((E):

Sopt
=

arjax 0 lyj(((()

=

argnax In,{ylojkax) +11-y()) log(1-hex)}
Component-wise we have

-(y(l4(x) +(1 -y)l(1 - he(x))
-(he(x) (r)

=y()+11-y
2(x) Ty

=(y() - ha(x))x!

Note thatthis is the same result as the one

we obtained from prob. modellingof linear

regression! In fact, it can be shown that both

regressions belong to the same class of optimization
problems.

Back to lemons &
oranges:



We her learn let. 1 such that:

(i) eX < 0 =g(atx) becomes ~ 1

(ii) et1<0-glot) become wo

C
decision Lines paralles do

boudary separation line correspond- to lines with constant

~

↳

- x f(v.X)!4
516

I 3 E

1

More general case:

gr(x) =ex

large p squeeze the steptogether, small N

broaden it! Extreme case:N - 0 yields

the perception:

y,13
⑮



Small peek indo Support Vector Radies (SVM)

Let us change notation:

et. 1 =wa +b,wj,beR

where on the left side 1 =(X,, ...,*n).

For the lemon-oram problem we had:

(i)wYx +bx0 =g(w.x +b) -1

(ii) t.+b 20 =g(w.x +b)
-0

Led us now conside the perception case

with new classifier h(w,b):

(i) (1 +b<0 =h(w,b) =
+1 classify accor-

(ii) wtx +b<0 =h(w,3) =
- 1 I digtoy={-z1

Now we define the geometric margin
wird.

traning datasets (**, y*):

(4) =y()(wx) +b)

How do we find w,b?
⑭



Formulate optimization problem noting that

glms, 0 always holds done with g() =0

at the decision bondary wt1 +b =0:

Find the optimal geometric margin
(m)

8 =mi8

C
- 1 Swice U minimizes distance

11 X X !
between pounds y(m) & the

x* X

X X ↳
W
1. a X

X decision bow dar, must
X X X 1

X X be outh. to it!
I 3 E

1

=>Fur each Y
In there is a -> D on the decision

bow day with:

a
=X

(m)
- y()y(m)l

usingthat for pouts a t 1 we
have

w.a +b =0
⑮



if follows:

wt.(1) - y()y(n)) +b =0

2=3 wt.x +b =y(m)f(m)
wEw =lw
(f(n) =y()(x+

Now from the definitive of the optimal margin

8
it follow that setting DWD=1 we normalize

the optimal parameters wo, b to their values

ad 8:8i y, then we optimize:

arsmax ys.d. Ey(n)(w1(n)
+b)30

can be made nice by realizing that the classifier

h(r,b) is mirariant under uscaling w,b. We
can thus choose:

wi,br
⑮6



and thus awire at the constrant optimization

* E 1.6.y((wx +b) < 1

We thus search the vectors w with mini-

mal distance from decision boundary, i.e.

the support rectors!

#. 2 Deep learning
So for we considered single-layer models:

h(x) =g(wx)
with some function (non-linear g: R +M.

We also saw feature,parametrizations y(1), i.e.
y(x) =(1x,x ...!.

Generally, we want models withfeatures y(X)

that are taylored to the underlying problem.
⑮



Let's go
back to the housingproblem d

make our model more complex:

Family size
square area einen a,
# of bedrooms X2
-alkabPrice
-essy

Zip code x3

->
School quee

wealth xns As

we introduced features:

a,(X,,X),anxs), az(X3,44)

to express price as function of these features.

But this on ad-hoc upresentation! We actually
want the optimization to identify important
features!

Thismotivates the deep neural network

ansaft i ⑱



Led reIN & maEIN, de[1,..., r], them

we nitroduce weight matrices:ERWdt*ndI
(d] Md+

bias vectors b -> R

& activation functions gla:RMdt- RMdt, such
that for input values XER"we parametrize

Mr+

output values y ER :

y
=g(r)(wirg(v-))w(r

-

g(r)....() +bi)

=g(rIGw(r), b(nJogN-Dbii)(x)
with g(d)(((a,b(a))(z) =g(a)(w(*z +b14))

g(1)

->
Iw[d]

: =

-> =b(d3

⑮S



let us consider a quadratic cost function

>* (W13,b(](x") =Eally - Il

How do we minimize I(?
Back propagation

Consider a network with one hidden lager &

b(d) =0 for simplicity.

We consider the last layer:

y
=g"(wz")

& while the cost function component wise:
u 2

j1 =im (yj- Yi) =
- 2is,")2m
j=1

(2)
We want to minimize all A j

>0 with:

im A "=iâ)Y!"-g"(wizill
⑯



We use gradient descent to update each

w for fixed j: we sw, -dw with

8,3 =
a Yw? g() la is learning rate)

=- (g)w-y!)E
having defined ? =(wY is... wie

Note Rat iodewissi
(ii) ? =gY)w,.)

his can be writte more conveniently:

di? =
- (?-t!)**"
=-ge02

Led us demote the updated weights by:

w =w + d
[2]

⑱



These updated weights now generate updated
[1]

A
errors;

-
We now want to updateWI bymmimizing

the errors inthe central layer. What are these

errors?Consider the updated cost function:

I=inly-gl"). +de,"))
with z =g"(w)
Minimization wird. Ih's:

* =EY-g"), +ar!.))E
⑫
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-"Se EinIw Ze

where we just used the definition of the errors

after optimizing E

Usin:

=Iwde?
(1)

Fate"= A Ske
k

We arire at:

-es =" (ww?e
-

Wk

-(+w) in *
[1]

back-propagated error 1

Node that here is a nice mite pation:mz
(1)

(sie
: ⑮



where we expanded g(x) to first order &

dropped the constant g(x) since it does not affect
the optimization. As we look for a correction

ows, we try to distribute the errors ?
over the weights:

[1]

Aj
- eie

gl =-wiee=> I : I
where we dropped the normalization since it is

the same for each row.

Now after updating w? -+ de,the
distributed errors become:

1 =(w +dw)
⑭



which is exactly what we devived above!

This allows do formulate the back propa-

gation algorithm:

(1) push forward sample X) to the last

Lager at cost - P(rommax) where

mmax=mxmd, to obtain1. Set

(S] (V] [V]

1=t ,
y =04 &1 =14- (i)

(2) calculate back-propagated error in d'te lager
by evaluating:

**ge. (* +ww
where war is error after prev. Optimization.

(3) calculate Dom]" from backpropagated
eror

in d't lager:

-]) = -1
-

za-
⑮



& update:w" 2W - xX J1S)

marks:
(i) bias modes can be easily added & We

formalism does not darge:

Wi (62) was

=(1(1z())

(ii) Computational cost scale only O(r. Mmax)

where mmax:max und! Can be speed

up further bygeneralizing input loutput

to update using several samples (itaching)
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