II: Numerical limen algebra
Within linear alfelore, we perform arithmetic operations on finite precision arithmetic.
In the following we wisider a fist dur. vector space over hal numbers $V \mathbb{R}^{n}(n \in \mathbb{N})$.
The complex case is obtained from $n \rightarrow 2 n$. available, elementary arithmetic operations:
.+ : n-digit arguments typically $\sim O(n)$ complexity
$\because, 1$: n-digit arguments typically $\sim O\left(n^{2}\right)$ complexity
Take home message:
Complexity is estimated w.r.I. \# multiplications/ divisions!
II.1: Finite precision arithmetics

In finite precision corithmetics there always is a discretization Δ in the representation.

Example: Double precision (64 bit float)

1 sign Bit $n_{e}=11$ exponent Bits $n_{f}=52$ fraction Bits
Representation of real number x :

$$
x=(-1)^{\operatorname{sign}} \cdot\left(1+\sum_{n=1}^{n_{f}} x_{n_{f}-n} \cdot 2^{-n}\right) \cdot 2^{e-1023}
$$

with $e=\sum_{n=0}^{n_{s}-1} x_{n_{f}+n_{e}-n} 2^{n}$ the exponent.
Thus here: $\Delta=2^{-5 \alpha} \cdot 2^{e-1023}$
Define relative precision: $\delta=2^{-n_{f}}$
Thus here: $\delta=2^{-52}=(1024)^{-5} \cdot \frac{1}{4} \approx 10^{-16}$
Consequences:
(i) $x \in \mathbb{R}$ only represented modulo $\delta:$

$$
\tilde{x}=x\left(1+\delta_{x}\right), \quad\left|\delta_{x}\right| \leqslant \delta / 2
$$

(ii) $z=x+y$ with rounding errors δ_{x}, δ_{y} :

$$
\tilde{z}=\tilde{x}+\tilde{y}=z+\underbrace{\left(x \delta_{x}+y \delta_{y}\right)}_{z \delta_{z}},\left|\delta_{z}\right| \leqslant \delta / 2
$$

(iii) $z=x-y$ with nom $d \bar{n} y$ errors δ_{x}, δ_{y} :

$$
\tilde{z}=\tilde{x}-\tilde{y}=z+\left(x \delta_{x}-y \delta_{y}\right)=z(1+\underbrace{\frac{x \delta_{x}-y \delta_{y}}{z}}_{\delta_{z}})
$$

Note: St here mot bounded but depends on $z!\quad z \rightarrow 0$, then δ_{z} can explode! called: Catastrophic cancellation
(iv) $z=x \cdot y$ with rome ding errors δ_{x}, δ_{y} :

$$
\tilde{z}=\tilde{x} \cdot \tilde{y}=x \cdot y\left(1+\delta_{x}+\delta_{y}+\delta_{x} \cdot \delta_{y}\right)=z\left(1+\delta_{z}\right)
$$

note that if $\tilde{x} \cdot \bar{y}<\delta$, then $\delta_{z}>\delta$ possible.
Fo see this white

$$
\begin{aligned}
& \tilde{x}=\left(1+r_{x}\right) 2^{e_{x}-1025}, \tilde{y}=\left(1+r_{y}\right) 2^{e_{y}-1023},\left|r_{x, y}\right|<1 \\
& \Rightarrow \tilde{x} \cdot \tilde{y}=\left(1+r_{x}\right)\left(1+r_{y}\right) 2^{e_{x}+e_{y}-2046}
\end{aligned}
$$

consider $\underbrace{r_{x} r_{y}} 2^{e_{x}+e_{y}-2046}$

$$
=\sum_{n_{1}, n=0}^{n}\left(x_{n_{f}-n} Y_{n_{f}-m} 2^{-(n+m)}\right)
$$

and thus: $\left|\delta_{z}\right|=\sum_{n+m>n_{f}}^{n_{f}} x_{n_{f}-n} y_{n_{f}-m} 2^{-(n+m)}$
\Rightarrow multiplication suppresses elerand bits
(v) $z=x / y$ similar to $x \cdot y$ bud here errors ak magnified (can be worked ont similar to (iv)

Keep these romania errors in mind as they can drastically in pact out wame!
Example:
(i)

$$
f(x)=\frac{x-\sin (x)}{1-\cos (x)} \equiv y
$$

Taylor expand sin (x) \& $\cos (x)$ \& evaluate at finite puccision anithwetics for $x \ll 1$

$$
\tilde{y}=\frac{x\left(\delta_{x}-\delta_{x}\right)}{x^{2}\left(1-\delta_{x}\right)^{2}}
$$

enmerator evaluates with precision δ but denominator with max precision $\sqrt{\delta}$!
$\Rightarrow x<\sqrt{\delta}$ then y undefined
(ii) $\operatorname{Var}(X)=\left((X-\langle X\rangle)^{2}\right\rangle$
evaluating $\operatorname{Var}(x)=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}$
lints pucision to $\delta \operatorname{Var}(X) \sim \sqrt{\delta}$ (catastrophic cancellation)
(iii) $z=x^{2}-y^{2}$
evaluation $z=\left(x^{2}\right)-\left(y^{2}\right)$ units precision to $\sqrt{\delta}$. But evaluating $z=(x+y)(x-y)$ evaluates to pucision δ !
II. 2 Matrix-Matrix multiplication

In the following, we consider for simplicity quedr. matrices $\in \mathbb{V}_{\mathbb{R}}^{m \times m}$ with $m=2^{n}, n \in \mathbb{N}$.

Divide and conquer
Decompose $C=\underline{A} \cdot \underline{B}$ with $\underline{\underline{A}}, \underline{B} \in \mathbb{V}_{\mathbb{R}}^{m \times m}$ ito

$$
\left(\begin{array}{ll}
\underline{\underline{C}}_{11} & \leqq 12 \\
\underline{\underline{C}}_{21} & \underline{\underline{C}}_{22}
\end{array}\right)=\left(\begin{array}{ll}
\underline{\underline{A}}_{11} & \underline{\underline{A}}_{12} \\
\underline{\underline{A}}_{21} & \underline{A}_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
\underline{B}_{11} & \underline{\underline{B}}_{12} \\
\underline{\underline{B}}_{21} & \underline{B}_{22}
\end{array}\right)
$$

with $E_{i j}, P_{i j}, \cong_{i j} \in V / \mathbb{R}$

$$
\left.\begin{array}{l}
C_{11}=\underline{A}_{11} \cdot \underline{B}_{1}+\underline{A}_{12} \cdot \underline{B}_{21} \\
\underline{C}_{12}=\underline{A}_{11} \cdot \underline{\underline{B}}_{21}+\underline{\underline{A}}_{12} \cdot \underline{\underline{B}}_{22} \\
\underline{C}_{21}=\underline{E}_{21} \cdot \underline{\underline{B}}_{11}+\underline{A}_{22} \cdot \underline{\underline{B}}_{21} \\
\underline{C}_{22}=\underline{A}_{21} \cdot \underline{\underline{B}}_{12}+\underline{A}_{22} \cdot \underline{B}_{22}
\end{array}\right\} \text { \& M-M-operations }
$$

For each M-M-operation $A_{i j} \underline{B}_{k e}, i, j, k, l \in\{1,2\}$ upend scheme. After $\log _{2} m$ uchrsions we arrive of 8 siple multiplications.
The total number of multiplications cam be deduced from drawing iteration tree:

$$
\Rightarrow \text { A multiplications }=8^{\log _{2} m}=\left(2^{3}\right)^{\log _{2} m}=m^{3}
$$

Ere e though that is not suprising, it tells
us two important things:
(i) $M-M$ products can be parallelized systemtidally
(ii) The counting technique suggests in restigating the decomposition for more efficient scheme
Indeed, the 8 equations are highly symmetric!
Strassem's algorithm (1969)
There are various wags to prove shassen's aporithu. Let us begun by introducing a basis for $V \mathbb{R}_{\mathbb{R}}^{2 \times 2}$

$$
\begin{aligned}
& \underline{e}^{1}=\left|e^{\prime}\right\rangle\left\langle e^{\prime}\right|=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \underline{e}^{2}=\left|\underline{e}^{\prime}\right\rangle\left\langle e^{2}\right|=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad \text { with }\left|\underline{e}^{\prime}\right\rangle \doteq\binom{1}{0} \\
& \underline{e}^{3}=\left|\underline{e}^{2}\right\rangle\left\langle\underline{e}^{\prime}\right|=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \underline{e}^{4}=\left|\underline{e}^{2}\right\rangle\left(\underline{e}^{2}\left|=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \quad\right| \underline{e}^{2}\right\rangle \doteq\binom{0}{1}
\end{aligned}
$$

They obey the algebra:

$$
\begin{array}{llll}
e^{1} \cdot e^{1}=e^{1} & \underline{\underline{e}}^{2} \cdot e^{1}=0 & \underline{e}^{3} \cdot e^{1}=e^{3} & \underline{e}^{4} \cdot e^{1}=0 \\
e^{1} \cdot e^{2}=e^{2} & \underline{e}^{2} \cdot e^{2}=0 & \underline{e}^{2} \cdot e^{2}=\underline{e}^{4} & \underline{e}^{4} \cdot e^{2}=0 \\
\underline{e}^{1} \cdot e^{3}=0 & \underline{e}^{2} \cdot e^{3}=e^{1} & \underline{e}^{3} \cdot e^{3}=0 & \underline{e}^{4} \cdot e^{3}=e^{3} \\
e^{1} \cdot e^{4}=0 & \underline{e}^{2} \cdot \underline{\underline{e}}^{4}=\underline{e}^{2} & \underline{e}^{3} \cdot e^{4}=0 & e^{4} \cdot e^{4}=e^{4}
\end{array}
$$

Now, we can write for any $A \in \mathbb{V}_{\mathbb{R}}^{m \times m}$

$$
\begin{aligned}
\underline{\underline{A}} & =\underline{A}_{11} \otimes e^{1}+\underline{A}_{12} \otimes \underline{\underline{e}}^{2}+\underline{\underline{t}}_{21} \otimes \underline{\underline{e}}^{3}+A_{22} \otimes e^{4} \\
& \equiv \underline{\underline{A}}_{1} \otimes \underline{e}^{1}+\underline{A}_{2} \otimes \underline{e}^{2}+\underline{A}_{3} \otimes \underline{e}^{3}+A_{4} \otimes e^{4}
\end{aligned}
$$

Note that

$$
\begin{aligned}
\underline{\underline{A}}+\lambda \underline{\underline{B}} & =\left(\underline{\underline{A}}_{1}+\lambda \underline{\underline{B}}_{1}\right) \otimes \underline{\underline{e}}^{1}+\left(\underline{\underline{A}}_{2}+\lambda \underline{\underline{B}}_{2}\right) \otimes \underline{\underline{e}}^{2}+\cdots \\
& =\sum_{j=1}^{4}\left(\underline{\underline{A}}_{j}+\lambda \underline{\underline{B}}_{j}\right) \otimes \underline{\underline{e}}^{j}
\end{aligned}
$$

We can this interpret any $A \in V_{\mathbb{R}}^{m \times m}$ as linear combaiction of states formed fro u map " \otimes^{n} Via: $\otimes: V_{\mathbb{R}}^{m / 2 \times m / 2} \times V_{\mathbb{R}}^{2 \times 2} \rightarrow V_{\mathbb{R}}^{m \times m}$.

We now expand $\subseteq=\underline{\underline{B}}$ using different basis sets $\left\{\underline{\underline{b}}^{j}\right\},\left\{\underline{\underline{b}}^{j}\right\}$

$$
\begin{aligned}
& \subseteq=\sum_{i, j=1}^{4}\left(A_{i} \cdot \underline{B}_{j}\right) \otimes\left(\underline{\underline{b}}^{i} \cdot \underline{\underline{b}}^{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\underline{\underline{t}}_{2} \cdot \underline{\underline{B}}_{1}\right) \otimes\left(\underline{\underline{b}}^{2} \cdot \hat{\underline{b}}_{\underline{1}}\right)+\ldots
\end{aligned}
$$

If we would choose for the canonical basis sets $\underline{\underline{b}}^{j}=\underline{\underline{b}}^{j}=\underline{e}^{j}$, them using (*) we would amine af

$$
\begin{aligned}
\underline{C} & \left(\underline{A}_{1} \cdot \underline{\underline{B}}_{1}\right) \otimes e^{1}+\left(\underline{t}_{1} \cdot \underline{\underline{B}}_{2}\right) \otimes e^{2} \\
& +\left(\underline{A}_{2} \cdot \underline{\underline{B}}_{3}\right) \otimes e^{1}+\left(\underline{A}_{2} \cdot \underline{B}_{4}\right) \otimes \underline{e}^{2} \\
& +\left(A_{3} \cdot \underline{B}_{1}\right) \otimes e^{3}+\left(\hat{A}_{3} \cdot \underline{\underline{B}}_{2}\right) \otimes \underline{e}^{4} \\
& +\left(\underline{A}_{4} \cdot \underline{\underline{B}}_{3}\right) \otimes \underline{\underline{e}}^{3}+\left(\hat{A}_{4} \cdot \underline{\underline{B}}_{4}\right) \otimes \underline{e}^{4}
\end{aligned}
$$

which is just the usuld from the divide-and-conquer decomposition.
Thus, the question reduces to:
Can we fund basis sets b $\underline{\underline{b}}^{j}, \tilde{\underline{b}}^{j}$ such that we meed less multiplications?
Let us introduce: $\underline{\underline{D}}=\left(\begin{array}{cc}0 & -1 \\ 1 & -1\end{array}\right)=\underline{\underline{e}}^{3}-\left(\underline{\underline{e}}^{2}+\underline{\underline{e}}^{4}\right)$.
Note that D is rotation matrix \& $D^{3}=\mathbb{1} \Rightarrow D^{2}=D^{-1}$ Then choose $\underline{X}=\underline{\underline{e}}^{2}$ (miportant: $\underline{\underline{X}} \neq \underline{\underline{X}}$) we have:

$$
\begin{aligned}
& \underline{D}^{-1}=\underline{D}^{2}=\underline{e}^{2}-e^{1}-e^{3} \\
& \underline{\underline{D}} \underline{\underline{x}} \underline{\underline{D}}=\underline{e}^{3}-\underline{e}^{4}
\end{aligned}
$$

and:

$$
\begin{aligned}
& \underline{\underline{x}} \underline{1} \underline{x}=\underline{e}^{2} \cdot \underline{e}^{2}=0 \\
& \underline{x} \underline{\underline{x}}=\underline{e}^{2}\left(\underline{e}^{3}-\underline{e}^{2}-\underline{e}^{4}\right) \underline{\underline{e}}^{2}=\left(\underline{e}^{1}-\underline{e}^{2}\right) \underline{e}^{2}=\underline{e}^{2}=\underline{x} \\
& \underline{\underline{x}} \underline{D}^{2} \underline{\underline{x}}=\left(\underline{e}^{1}-\underline{e}^{2}\right) \underline{e}^{4}=-\underline{e}^{2}=-\underline{\underline{x}}
\end{aligned}
$$

it can be shown that the two gets are a bats of $V_{\mathbb{R}^{2 \times 2}}$:

$$
\begin{aligned}
& D_{1}=\left\{\underline{D}, \underline{x}, \underline{D}^{-1} \underline{\underline{x}} \underline{D}, \underline{\underline{x}} D^{-1}\right\} \equiv\left\{\underline{b}^{1}, \underline{\underline{b}}^{2}, \underline{b}^{3}, \underline{b}^{4}\right\} \\
& D_{2}=\left\{\underline{D}^{-1}, \underline{x}, \underline{D}^{-1} \underline{x} D, \underline{\underline{D}} D^{-1}\right\} \equiv\left\{\tilde{\underline{b}}^{1}, \underline{b}^{2}, \underline{\underline{b}}^{3}, \underline{\underline{b}}^{4}\right\}
\end{aligned}
$$

Now we compute all products of $b_{=}^{j} \in D_{1} \& \underline{\underline{b}}^{j} \in B$

Note that only seven products occur!
Thus we can expand $\underline{\underline{C}}=\underline{\underline{A}} \cdot \underline{\underline{B}}$ in this basis using

$$
\begin{aligned}
& b_{\underline{\prime}} \cdot \tilde{\underline{b}}^{\prime}=\underline{1}=\underline{\underline{e}}^{\prime}+\underline{\underline{e}}^{4} \\
& \underline{\underline{b}}^{\prime} \cdot \tilde{\underline{b}}^{2}=\underline{\underline{D}} \underline{\underline{X}}=\underline{\underline{e}}^{4} \text {, } \\
& \underline{\underline{b}}^{\prime} \cdot \underline{\underline{b}}^{3}=\underline{\underline{x}} \underline{\underline{D}}=\underline{\underline{e}}^{\prime}-\underline{\underline{e}}^{2} \\
& \underline{b}^{2} \cdot \tilde{\underline{S}}^{1}=\underline{\underline{x}} \underline{\underline{D}}^{-1}=-\underline{e}^{\prime} \text {, } \\
& \underline{\underline{b}}^{3} \cdot \underline{\underline{b}}^{\prime}=\underline{D}^{-1} \underline{\underline{x}}=-\underline{\underline{e}}^{2}-\underline{e}^{4} \\
& \underline{\underline{b}}^{\prime} \cdot \tilde{\underline{b}}^{4}=\underline{\underline{D}}^{-1} \underline{\underline{x}} \underline{\underline{D}}^{-1}=\underline{\underline{e}}^{1}+\underline{\underline{e}}^{3} \text {, } \\
& \underline{\underline{b}}^{4} \cdot \underline{\underline{b}}^{1}=D \underline{\underline{X}} \underline{\underline{D}}=\underline{\underline{e}}^{3}-\underline{\underline{e}}^{4}
\end{aligned}
$$

such that

$$
\begin{aligned}
\underline{\underline{C}} & =\left(\underline{\underline{A}}_{1} \cdot \underline{\underline{B}}_{1}\right) \otimes\left(\underline{\underline{e}}^{1}+\underline{\underline{e}}^{4}\right) \\
& +\left(\underline{\underline{A}}_{1}-\underline{\underline{A}}_{4}\right) \cdot \underline{\underline{B}}_{2} \otimes \underline{\underline{e}}^{4} \\
& +\left(\underline{\underline{A}}_{1}-\underline{\underline{A}}_{2}\right) \cdot \underline{\underline{B}}_{3} \otimes\left(\underline{e}^{1}-\underline{e}^{2}\right) \\
& -\underline{\underline{A}}_{2}\left(\underline{\underline{B}}_{1}+\underline{\underline{B}}_{4}\right) \otimes \underline{e}^{\prime} \\
& -\underline{\underline{A}}_{3}\left(\underline{\underline{B}}_{1}+\underline{\underline{B}}_{2}\right) \otimes\left(\underline{\underline{e}}^{2}+e^{4}\right) \\
& +\left(\underline{\underline{A}}_{1}-\underline{A}_{3}\right) \underline{\underline{B}}_{4} \otimes\left(\underline{\underline{e}}^{1}+e^{3}\right) \\
& +\underline{E}_{4}\left(\underline{B}_{1}+\underline{\underline{B}}_{3}\right) \otimes\left(\underline{e}^{3}-\underline{e}^{4}\right)
\end{aligned}
$$

Now we only, need to upresent A_{i} \& \underline{B}_{i} in the old basis \underline{e}^{i} :

$$
\begin{array}{ll}
\underline{b}^{\prime}=\underline{e}^{3} \cdot e^{2}-e^{4} & \underline{\underline{b}}^{\prime}=e^{2}-e^{\prime}-\underline{e}^{3} \\
\underline{\underline{b}}^{2}=\underline{\underline{e}}^{2} & \underline{\underline{b}}^{2}=e^{2}
\end{array}
$$

$$
\begin{aligned}
& \underline{\underline{b}}^{3}=-\underline{\underline{e}}^{1}+\underline{\underline{e}}^{2}-\underline{\underline{e}}^{3}+\underline{\underline{e}}^{4} \\
& \tilde{\underline{b}}^{3}=-\underline{e}^{1}+\underline{e}^{2}-\underline{\underline{e}}^{5}+\underline{\underline{e}}^{4} \\
& \underline{\underline{b}}^{4}=-\underline{e}^{3} \\
& \hat{\underline{b}}^{4}=-\underline{\underline{e}}^{3} \\
& \Rightarrow A=\underline{A}_{1} \otimes\left(\underline{\underline{e}}^{3}-\underline{\underline{e}}^{2}-\underline{e}^{4}\right) \\
& \Rightarrow \underline{\underline{B}}=\underline{B}_{1} \otimes\left(\underline{e}^{2}-\underline{\underline{e}}^{1}-\underline{\underline{e}}^{3}\right) \\
& +\hat{A}_{2} \otimes \underline{e}^{2} \\
& -\underline{\underline{B}}=0 \varrho^{2} \\
& +\underline{A}_{3} \otimes\left(-\underline{\underline{e}}^{1}+\underline{e}^{2}-\underline{\underline{e}}^{3}+\underline{\underline{e}}^{4}\right) \\
& +\underline{B}_{3} \otimes\left(-\underline{e}^{1}+\underline{e}^{2}-\underline{e}^{5}+\underline{\underline{e}}^{4}\right) \\
& -\underline{A}_{4} \otimes \underline{\underline{e}}^{3} \\
& \stackrel{\prime}{=} \underline{A}_{11} \otimes e^{1}+\underline{\underline{A}}_{12} \otimes \underline{e}^{2} \\
& +A_{21} \otimes \underline{\underline{e}}^{3}+\underline{\underline{A}}_{22} \otimes \underline{\underline{e}}^{4} \\
& -\underline{B}_{4} \otimes e^{3} \\
& { }^{\prime} \underline{\underline{B}}_{11} \otimes \underline{\underline{e}}^{\prime}+\underline{B}_{12} \otimes \underline{\underline{e}}^{2} \\
& +\underline{\underline{R}}_{21} \otimes \underline{\underline{e}}^{3}+\underline{\underline{B}}_{22} \otimes \underline{\underline{e}}^{4}
\end{aligned}
$$

solving for $\underline{A}_{i}\left(\underline{A}_{11}, \cdots, A_{22}\right)$ \& $\underline{B}_{i}\left(\underline{\underline{B}}_{11}, \ldots, \underline{B}_{22}\right)$ and inserting ito $(* *)$, after some further algebra one arrives at

$$
\begin{aligned}
& \subseteq=\left(\underline{\underline{H}}_{I}+\underline{\underline{H}}_{\underline{V}}-\underline{\underline{H}}_{\underline{\nabla}}+\underline{\underline{H}}_{\underline{\pi}}\right) \otimes \underline{e}^{\prime} \\
& +\left(\underline{\underline{H}}_{\text {III }}+\underline{\underline{H}}_{\underline{V}}\right) \otimes e_{\underline{e}}+\left(\underline{\underline{H}}_{\underline{\text { II }}}+\underline{\underline{H}}_{\text {IV }}\right) \otimes e^{3} \\
& +\left(\underline{\underline{u}}_{I}+\underline{\underline{H}}_{\text {II }}-\underline{\underline{H}}_{\text {II }}+\underline{\underline{H}}_{\bar{\nabla}}\right) \otimes e^{4}
\end{aligned}
$$

with

$$
\begin{aligned}
& \underline{\underline{H}}_{I}=\left(\underline{A}_{11}+\underline{A}_{22}\right)\left(\underline{B}_{11}+\underline{\underline{B}}_{22}\right), \underline{\underline{H}}_{\text {II }}=\left(A_{11}+A_{22}\right) \underline{B}_{11} \\
& \underline{\underline{H}}_{\text {II }}=\underline{A}_{11}\left(\underline{\underline{B}}_{12}-\underline{\underline{B}}_{22}\right), \underline{A}_{\underline{V}}=\underline{A}_{22}\left(-\underline{\underline{B}}_{11}+\underline{\underline{B}}_{21}\right), \underline{\underline{\underline{H}}} \underline{\underline{V}}=\left(\underline{A}_{11}+\underline{A}_{12}\right) \underline{\underline{B}}_{22} \\
& \underline{\underline{\varphi}}_{\underline{V}}=\left(-\underline{A}_{11}+A_{21}\right)\left(\underline{B}_{11}+\underline{\underline{B}}_{12}\right), \underline{\underline{H}}_{V I I}=\left(\mathcal{E}_{12}-\underline{A}_{22}\right)\left(\underline{\underline{B}}_{21}+\underline{\underline{B}}_{22}\right)
\end{aligned}
$$

We can analyze the complexity by drawing the same thee of iterations but now with only 7 multiplications, ie. 7 branches emerging from each mode.

$$
\Rightarrow \text { \#multiplications }=7^{\log _{2} m}=m^{\log _{2} 7}!!!
$$

