
#3 Matrix-factorization

· required for basically any optimization problem

·required for many compression algorithms

required for funding optimized bat's sets

QR decomposition

· Building block of most factorizations.
mx n

.
consider & Vi . m, n e IN

If m =n, then there are

&,z Vi
man

will

(i) E =2.

(iil =t
liiil I is upper triangular

· if AEV"*, men, Den Rere is EV**Munitary
matrixwill:

E=()
ꋺ



where I -Vc"* is upper fingular & & is

Re (m-n) xn zero madvix.

Computation of && E

(i) Gram-Schmidt-ortlogonalization to columns j

of A =(a,a.. - a)
Idea:compute projectors for some rector y:

It=
Itarate:

1,-

72 =11 -2*2z =q -7
Az

=kt1*-42 =as - na -as
i

1x
=(1 -2)ax

Then Ex-Fans are arkonormal basis & we

can express the columas ag inHat

bar's:

a
=(ej(2x)ej ꋻ



I

=>1 =(E) (ea?--
ae

I-..
-

0 senaus

-E
But involvement of inverse will numerically
unstable (finite precision arithmetics!)

Better:Householder transformation

Basic building block is a reflection of a rector

xYr" at a hyperplane generated from a

vector Ic Y":

For IeY" with 11=1define:

& =1 - 21))

2D-icstration Qx:
- A =((x)(2)

+(I
+(X)(I+3

iIt
ꋼ



Let us choose for some I eV"

↓ =((X - x 2) with a =1Xdc =1X - ce,1

Then we
have

&.x =(1 - 2()())I

=1
- 21x)1 =x(1 - E(1x)) +(1x)2,

uni (XIX) =
(*(X) - d(1,1x)-

2

&2 =(x(X) - 2xx12) +a
=2(2 - x(x(e))

=>Q.x =a1,

Thus we can
use QE*") &X=a, to drans-

from the first column vector of E:

&"E =6."a....IE
applying this construction scheme scusirel

1k
-1x- 1 =

we
obtain

unig -(4) = I .. Ia(k)
R =Ga-...

"

E
= ꋽ



=>defining & =(E...E" & using

unitarityof Househoulder tratos we get

*=

numerical costs:

at 6-th iteration we have:

· In-1-11 mudiplications from IS(2/

·(n-1-1)" multiplications from (I1Aj)

summing over k =110k =n-1 yields ~O()

Eigenvalue decomposition (EvD)
MxM

*

eVei

7 AEVK*** & diagonal matix (IEVM*

with E =ECII
eixe

16 E
=Atder 1

--a&EV
16 follows immediately:

...*=(ri) with E(i) =x;li), XiER

ꋻ8



The power method

Consider (X) EV**&(X1Xi) =C,FO for all (i)

Expand (1) inBasis of [Hi)] & act with

Aou (X):

=(1) =A2(,1x) (ki)
=)

+2)+...)

=X,(2,11,) +() +123) +...)

assume:

(i) X:ordered such that:

icj =X,,j

ciil Anon-dej: itj =s Xi = j

Note:(ii) is rather serire, (i) can always be

achived. (ii) can be resolved by orthogona-
lization.

Then we
have for arbitrary keIN:

ꋻ



=4(x) =x,4),k) +E()"(i))
k20,12,

This subjects the following algorithm:

(i) apply A to 115) to obtain

155+) =Al

(ii) normalize to obtain

1x
+y=

starting with 1 = (X) speat until

1 - (x(x)d

with a being precision of approx. of

eijerector (I) belongingto bogest eigenvalue.
Drawback:

If we want to get is 1eervalues, we

have to restart m-l times orthogonali-



zing 18 against all prev found

eigen rectors:

(194 =(x) - 2,(j(x)(ki)
Simultaneous orlogonalization (SO)

Idea:Do orthogonalization after each application
of E to maintainLinea widependence.

Consider AIX)
=""*)

=(X) =1 -"(X)
n

42.2

=>A(X) =0.242...." (1)
Thus if A1) converps to some V, Men

&4 is madrix of eigenreators. This can be

shows usingfact that Irepresents Ami basis

obtained from Gram-Schmidt-orthog., such that

&l,) =1, 12).
ꋷ



Let us investigate a particular propertyof the
intermediate steps inte simultaneous

owlo goualization:

A=q"I =ga =2"

*a" =2 =a4a!) =2)
:

*a =g(
+

4
+1
=(4++1(4) =2(4

+1)

Note that iterations 4 & kil can be connected

multiplying II. Ic1 ysee yellow marked madrices):

=>24.2
-..... -...E

=g(4*

=>A =(2.2-).....
wen

uppe triangularb

Swice QR-decomposition is unique, this yields

theadecomtsition of 6-th power of in
is approx. to matrixof eigen rectors

ꋼ



QR-algorithm (John Francis(1955)/ Vera Kublanorskaya (194)
sketch of the idea lose only:

(i) QR- decompose 1:A
=1=""

(ii) construct ="

(iii) QR-decompose * =AR) & continue from (ii)

note that at 6-th iteration:

Eay
& hence Al has the same eigenvalues asE.

The sequence A" can be shown to conses to a

triangular madrix. Snice eipnvalues in are the

roots of the characteristic polynomial fullfiling
def(E - x1) =0

it follows:

16 Al is uppe drangular,
then:

diag 1M
=(X. ... al

the eigen values of E. ꋹ



complexity can be further reduced bryingE

to upper
Hessen be form:-P(u

Ne;

·Thereare various special cases such as

4)Etri-diagonal

b)Ahermitian

6 only [M4) required
d) only smalles Rx required

which drastically speed up computations!

Question:Why does QR- algorithm conreges to

EVD?

We modify motation:

(i) Demode by=E I the madies obtained in

QR - algorithm
(ii) Devote byE=**I* Re matrices

obtained in

50 - algorithm ꋽ



In QR- algorithm we have:
k

A* =("")
~(1) - (i)

-
E........
-...

↓ times

now I. Es are Hose matrices that are

factored inthe seconditeration of QR-algorithm:

E="... I
~

timesk - 1

=>E
=E....I*".....

From SO-algovilm we know:

** =a......
swice"!.... is unitary by construction,
we have from uniqueness of QR-decomposition:

&4 =g......()
& thus the product of the Eycied approx. Go

matrixof engenrectors of E ꋻ



Smigular value decomposition (SVD)

For every rectangular madix EEV"*" (unsu?
mxn

there existY, S, I tYr** with:

(i) 1 =1..I

(ii) 11 =1mxm

(iii) I.It =1uxu

(iv) S =diag(s,... sa) with S,52 ... ?s0

&SjER

Note:In contrast to EVD here we have:

(i) SVD also exists for rectangular matrices

(ii) S;are always ral

(iii) 11=Amen & EIEluxe always
holds true

Best rank. 4approximation
Let us try to develop some intuitive for

the SUD to appreciate its usefullness.
ꋼ



Consider the least- square mimimization

problem:
Let ageV", je{t.., my be a set of un

powits. Find the line IEV which

minimites the distance of Ido all 9j,

projecting Ito the subspaces spanned byGj.

&
e

A -I =
min

k

2(a; - (x1aj)
je XEVI
&z

(a)=1
4

Ein
"i
-93

I

Note that fixing aj, all is constant, so

Guiding I is equivalent to maximizing (xaj)!
mx 4

Now let E =(- I EVK .

We define the first singular vector I, via:

~,
=max /E(X)1 =m*V/k *
1x=1

ꋽ



& S=1Eis as the first singular vector.

Now I,) spans
a subspace, which solves the

least squares problem.
But what about the

seridual? We quantify it byfunding the

solution to the problem:

vz =maxn(E(x)),S2
=(A(Xz)

*cV/k

111
=1

(,11)
=0

In the above sketch:
e

&

**

in
-I

&z

v 4
-2 *

93
I

continue that process we obtain series:

*, .... Er
with Alj) the solution to

the zesidual least square problem:
j -1

(I)
=maxnlAlj)-EE) & r 1 n.
kjtVk

kjl =1 ꋾ



&f the sequence of singular values sj

with: isj S,Sj.

Consequences for eV* insm

(i) For smigular vectors I...... In, k2w,
the

subspace k
=

span (Y,..... [2] is the best fit

↳- dimensional subspace to A.

(ii) Snice for each Isthe norm/A1 gives the

summed squared components along Ij, it

follows immediately:

laj =j,ka
2

-

1 =s
k =1

On the other hand lag=lag
Thus the summed, squared smigular
values yild the Frobenius norm of Ai

IIE=
ꋻ



(iii) Snice any AeY" can be written as

(x) =(j1x)(j) +2+1x)2t)

Since also Al =0, we can define

a new set of basis vectors

14j) =5;(j)
& it can be shown that:

A=(j);155
From (i), (ii) & Livil it follows:

For a given
k n, the

madrix

A(k) =(ki);)5;
is the best rank -

k approximation wort.

the Froben ins norm:

1 =" -I
8


