II. 3 Matrix -factorization

- Uquied for basically any optimization pubden - required for many compression algorithms - Uquind for fuidúg optimized baths sets

QR decomposition

- Building block of most factorizations.
- Consider $\underline{\underline{A}} \in V_{\mathbb{R}}^{m \times n} \quad, m, n \in \mathbb{N}$ If $m=n$, the en there are
$\underline{Q}, \underline{\underline{R}} \in V_{\mathbb{R}}^{m \times m}$ will
(i) $\underline{\underline{t}}=\underline{\underline{Q}} \cdot \underline{\underline{R}}$
(ii) $\underline{\underline{Q}}^{-1}=\underline{\underline{Q}}^{+}$
(iii) $\underline{\underline{R}}$ is upper triangular
- if $\underline{A} \in V_{\mathbb{C}}^{m \times 4}, m z n$, then thee is $\underline{\underline{Q}} \in \mathbb{V}_{\mathbb{C}}^{m \times m}$ unitary matrix with:

$$
\underline{\underline{A}}=\underline{\underline{Q}}[\underline{\underline{R}} \underline{\underline{\theta}}]
$$

where $\underline{\underline{R}} \in \mathbb{C}^{u \times n}$ is upper triangular $\& \mathbb{O}$ is the $(m-n) \times n$ zero matrix.

Computation of $\underline{=}$ \& $\stackrel{R}{=}$
(i) Gram-Schmidt-ortlogonabization do columns a

$$
\text { of } \underline{\underline{A}}=\left(\begin{array}{llll}
\underline{a}_{1} & \underline{q}_{2} & \cdots & \underline{a}_{n}
\end{array}\right)
$$

Idea: compute projectors for some rector \underline{u} :

$$
\underline{p}^{\underline{u}}=\frac{|\underline{u}\rangle\langle\underline{u}|}{\|\underline{u}\|}
$$

Iterate:

$$
\begin{aligned}
& \underline{u}_{1}=\frac{\underline{u}_{1}}{\left\|\underline{a}_{1}\right\|} \\
& \underline{u}_{2}=\left(\underline{11}-\underline{P}^{\underline{u_{1}}}\right) \underline{a}_{2}=\underline{a}_{2}-\frac{\left\langle\underline{u}_{1} \mid \underline{a}_{2}\right\rangle}{\left\|\underline{u}_{2}\right\|} \underline{u}_{1} \\
& \underline{u}_{3}=\left(11-\underline{P}^{\underline{u}_{1}}-\underline{P}^{u_{2}}\right) \underline{a}_{3}=\underline{a}_{3}-\frac{\left\langle\underline{u}_{2} \mid \underline{a}_{3}\right\rangle}{\left\|\underline{u}_{2}\right\|} \underline{a}_{3}-\frac{\left\langle\underline{u}_{1} \mid a_{3}\right\rangle}{\left\|u_{1}\right\|} a_{3} \\
& \vdots \\
& \underline{u}_{k}=\left(\underline{11}-\sum_{j=1}^{k-1} \underline{p}^{\underline{u}_{j}}\right) \underline{a}_{k}
\end{aligned}
$$

Then $e_{k}=\frac{u_{L}}{\left\|y_{L}\right\|}$ are orthonormal basis \& we com express the culumas a_{j} is that bar's:

$$
\underline{a}_{k}=\sum_{j=1}^{k}\left\langle\underline{e}_{j} \mid \underline{a}_{k}\right\rangle e_{j}
$$

$$
\Rightarrow \stackrel{A}{=}=\underbrace{\left(\begin{array}{c}
-e_{1}- \\
-s_{2}- \\
\vdots \\
-\underline{e}_{3}-
\end{array}\right)}_{\underline{Q}} \underbrace{\left(\begin{array}{cccc}
\left\langle e_{1} \mid a_{1}\right\rangle & \left(e_{1} \mid a_{2}\right) & \cdots & \left\langle e_{1} \mid \varepsilon_{n}\right\rangle \\
0 & \left\langle e_{2} \mid \underline{g}_{2}\right\rangle & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \left\langle e_{n} \mid a_{n}\right\rangle
\end{array}\right)}_{\underline{R}}
$$

But involvement of ciresse $\left\|y_{j}\right\|^{-1}$ numerically unstable (finite precision anithuetics!)

Better: Householder transformations
Basic building block is a reflection of a rector $\underline{x} \in \mathbb{V}_{\mathbb{K}}{ }^{n}$ at a hyperplane generated from a vector $\underline{v} \in V_{\mathbb{K}}{ }^{n}$:
For $v \in \mathbb{V}_{\mid k}^{n}$ with $\|\underline{v}\|=1$ define:

$$
\underline{Q}=\underline{1}-2|\underline{v}\rangle\langle v|
$$

2D-illustration Q $\underline{\underline{x}}$:

Let us choose for some $x \in V_{\mathbb{R}}{ }^{n}$
$\underline{v}=C^{-1}\left(\underline{x}-\alpha \underline{e}_{1}\right)$ with $\alpha=\|\underline{x}\| \& \quad C=\|\underline{x}-\alpha \underline{e}$,
Then we have

$$
\begin{aligned}
& \underline{\underline{Q}} \underline{x}=(\underline{1}-2|\underline{v}\rangle\langle\underline{v}|) \underline{x} \\
&\left.\left.=\underline{x}-2\langle\underline{v} \mid \underline{x}\rangle \underline{v}=\underline{x}\left(\underline{1}-\frac{2}{c}\langle\underline{v} \mid \underline{x}\rangle\right)\right)+\frac{2 \alpha}{c}\langle\underline{v} \mid \underline{x}\rangle\right) \underline{e}_{1} \\
& \text { using }\langle\underline{v} \mid \underline{x}\rangle=\frac{\langle\underline{x} \mid \underline{x}\rangle-\alpha\left\langle\underline{e}_{1} \mid \underline{x}\right\rangle}{c}=\frac{\alpha^{2}-\alpha\left\langle\underline{e}_{1} \mid \underline{\underline{x}}\right\rangle}{C} \\
& \& \quad C^{2}=\langle\underline{x} \mid \underline{x}\rangle-\alpha \alpha\left\langle\underline{x} \mid \underline{e}_{1}\right\rangle+\alpha^{2}=2\left(\alpha^{2}-\alpha\left\langle\underline{x}\left(e_{1}\right\rangle\right)\right. \\
& \Rightarrow \quad \underline{Q} \cdot \underline{x}=\alpha \underline{e}_{1}
\end{aligned}
$$

Thins we can use $\underline{\underline{Q}} \equiv \underline{\underline{Q}}^{(1)} \quad \& \underline{x}=a_{1}$ to transform the first column vector of \mathbb{A};

$$
\underline{Q}^{(1)} \stackrel{A}{\underline{A}}=\left(\begin{array}{ccc}
\alpha_{1} & \underline{Q}^{(1)} \underline{a}_{2} & \cdots \\
0 & A^{(1)} \\
\vdots & \underline{\underline{a}}
\end{array}\right)
$$

applying this coustuation scheme recursively using $\underline{\underline{Q}}^{(k)}=\left(\begin{array}{cc}\underline{11}_{k-1} \times k-1 & \underline{\underline{O}} \\ \underline{O} & \underline{\underline{Q}}^{(k)}\end{array}\right)$ we obtain

$$
\underline{\underline{R}}=\underline{\underline{Q}}^{(n)} \underline{\underline{Q}}^{(n-1)} \cdots \underline{\underline{Q}}^{(1)} \underline{\underline{A}}
$$

\Rightarrow defining $\underline{\underline{Q}}=\left(\underline{\underline{Q}}^{(n)} \cdots \underline{\underline{Q}}^{(1)}\right)^{t}$ \& using unitarity of Houschoulder da los we ged

$$
\underline{\underline{A}}=\underline{Q} \cdot \underline{\underline{R}}
$$

numencul costs:
at k-th iteration we have:

- $(n-(k-1))^{2}$ multiplications from $|\underline{v}\rangle\langle\underline{v}|$
- $(n-(k-1))^{2}$ multiplications from $\left\langle\underline{v} \mid \underline{a}_{j}\right\rangle$
summing over $x=1$ to $k=n-1$ yields $\sim O\left(n^{3}\right)$
Eigenvalue decomposition (EVD)
$A \in V_{C}^{m \times m}$:
$\exists \underline{\underline{U}} \in \mathbb{V} \mathbb{C}^{m \times m}$ \& diagonal matrix $\underline{D} \in \mathbb{V}_{\mathbb{C}}^{m \times m}$
with $\underline{\underline{A}}=\underline{\underline{U}} \underline{\underline{D}} \underline{\underline{U}}^{-1}$
if $\underline{\underline{A}}=\underline{A}^{+}$then $\underline{U}^{-1}=\underline{U}^{+} \quad \& \quad D \in \mathbb{V}_{\mathbb{R}}^{m \times m}$ If follows immediately:

$$
\underline{\underline{U}}=\left(\begin{array}{cc}
1 & 1 \\
\underline{v}_{1} & \cdots \\
1 & \underline{v}_{m}
\end{array}\right) \text { with } \underline{\underline{A}}\left(\underline{v}_{i}\right)=\lambda_{i}\left|\underline{v}_{i}\right\rangle, \lambda_{i} \in \mathbb{R}
$$

The power method
Consider $|\underline{x}\rangle \in V_{\mathbb{C}}^{m \times n} \&\left\langle\underline{x} \mid \underline{V}_{i}\right\rangle \equiv C_{i} \neq 0$ for $a l l\left|v_{i}\right\rangle$ Expand $|\underline{x}\rangle$ in Basis of $\left\{\left(\underline{v}_{i}\right)\right\}$ \& act with A on $|\underline{x}\rangle$:

$$
\begin{aligned}
\underline{A}|\underline{x}\rangle & =\underline{A} \sum_{i=1}^{\prod_{i}}\left\langle\underline{v}_{i} \mid \underline{\underline{x}}\right\rangle\left|\underline{v}_{i}\right\rangle \\
& =\underline{A}\left(c_{1}\left|\underline{v}_{1}\right\rangle+c_{2}\left|\underline{v}_{2}\right\rangle+\cdots\right) \\
& =\lambda_{1}\left(c_{1}\left|\underline{v}_{1}\right\rangle+\frac{c_{2}}{c_{1}}\left|\underline{v}_{2}\right\rangle+\frac{c_{3}}{c_{1}}\left|\underline{v}_{3}\right\rangle+\cdots\right)
\end{aligned}
$$

assume:
(i) λ_{i} ordered such that:

$$
\begin{aligned}
& \text { i) } j \Rightarrow \lambda_{i} \geqslant \lambda_{j} \\
& \text { (ii) A non-dej: } i \neq j \Leftrightarrow \lambda_{i} \neq \lambda_{j}
\end{aligned}
$$

Note: (ii) is rathe serest, (i) can always be achieved. (ii) can be usolved by ortlegonaligation.
Then we have for abitivary $k \in \mathbb{N}$:

$$
\begin{aligned}
\underline{A}^{k}|\underline{x}\rangle & =\lambda_{1}^{k}\left(c_{1}\left|v_{1}\right\rangle+\sum_{j=2}^{m}\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{k} c_{j}\left|\underline{v}_{j}\right\rangle\right) \\
& \stackrel{k \rightarrow \infty}{=} \lambda_{1}^{k} c_{1}\left|\underline{v}_{1}\right\rangle
\end{aligned}
$$

This suggeds the following algozithm:
(i) apply A to $\left|\underline{x}^{j}\right\rangle$ to obtam

$$
\left|\underline{\tilde{x}}^{j+1}\right\rangle=\underline{A}\left|\underline{x}^{j}\right\rangle
$$

(ii) normalize to obtam

$$
\left|\underline{x}^{j+1}\right\rangle=\frac{\left|\tilde{x}^{j+1}\right\rangle}{\|\left|\tilde{x}^{j+1}\right\rangle \|}
$$

Slarting with $\left|\underline{x}^{0}\right\rangle \equiv|\underline{x}\rangle$ upeat mutil

$$
\underline{11}-\left\langle\underline{x}^{j+1} \mid \underline{x}^{j}\right\rangle\langle\delta
$$

with δ being pucision of approx. of eijenvector $\left|\underline{v}^{\prime}\right\rangle$ belonjing to largest eipervalue.
Drawback:
If we want to get $n>1$ eijer values, we have to restart $n-1$ times orthogonali-
zūj $\left|\underline{x}^{0}\right\rangle$ against all prev. found ripe vectors:

$$
\left|\underline{x}^{0, n}\right\rangle=|\underline{x}\rangle-\sum_{j=1}^{n-1}\left\langle\underline{v}_{j} \mid \underline{x}\right\rangle\left|\underline{v}_{j}\right\rangle
$$

Simultaneous ortlojonalization (SO)
Idea: Do orthogoualizution after each application of A to manitam hirer wi dependence.
consider $\underline{\underline{A}}|\underline{x}\rangle=\underline{\underline{Q^{(1)}} \cdot \underline{\underline{R}}^{(1)}|\underline{x}\rangle}$

$$
\begin{aligned}
& \underline{A}^{2}|\underline{x}\rangle=\underbrace{\underline{A} \cdot \underline{\underline{U}}^{(1)} \cdot}_{\underline{Q^{(2)}} \cdot \underline{R}^{(2)}} \cdot \underline{R^{(1)}}|\underline{x}\rangle \\
& \Rightarrow \underline{A}^{k}|\underline{x}\rangle=\underline{Q}^{(k)} \cdot \underline{\underline{R}}^{(k)} \cdot \underline{\underline{R}}^{(k-1)} \cdots \underline{\underline{R}}^{(1)}|\underline{x}\rangle
\end{aligned}
$$

Thus if $\underline{A}^{k}|\underline{x}\rangle$ converges to some $\in V^{m} c^{m}$, then $\underline{Q}^{(k)}$ is matrix of eijenrectors. This can be shown uni, fact that $\underline{\underline{Q}}$. upereents $\underline{=}$ is basis obtamed from Gram-Schmidd-orthog., such that $\left.\underline{\underline{Q}} \cdot \underline{\underline{A}}\left|\underline{v}_{1}\right\rangle=\lambda_{1} \mid \underline{e}_{1}\right)$.

Let us investigate a particular property of the intermediate steps in the simultaneous ortlogonalization:

$$
\begin{gathered}
\underline{A}=\underline{Q}^{(1)} \underline{R}^{(1)} \Rightarrow \underline{Q}^{(1)^{\dagger}} \underline{\underline{A}}=\underline{R}^{(1)} \\
\underline{\underline{A}} \underline{\underline{Q}}^{(1)}=\underline{\underline{Q}}^{(2)} \underline{\underline{R}}^{(2)} \Rightarrow \underline{\underline{Q}}^{(2)^{\dagger}} \underline{\underline{A}} \underline{\underline{Q}}^{(1)}=\underline{\underline{R}}^{(2)} \\
\vdots \\
\underline{\underline{A}} \underline{Q}^{(k)}=\underline{\underline{Q}}^{(k+1)} \underline{\underline{R}}^{(k+1)} \Rightarrow \underline{Q}^{(k+1)} \underline{\underline{A}} \underline{\underline{Q}}^{(k)}=\underline{\underline{R}}^{(k+1)}
\end{gathered}
$$

Note that iterations $k \& k+1$ can be whnected multiplying $\underline{\underline{R}}^{(k)} \cdot \underline{\underline{R}}^{(k-1)}$ (see yellow marked matrices):

$$
\begin{aligned}
& \Rightarrow \underline{R}^{(k)} \cdot \underline{\underline{R}}^{(k-1)} \cdot \cdots \cdot \underline{\underline{R}}^{(1)}=\underline{\underline{Q}}^{(k)^{\dagger}} \underline{\underline{A}}_{\underline{Q^{(k-1)}} \underline{Q}^{(k-1)}}^{\underline{A}} \cdots \underline{\underline{Q}}^{(1)} \underline{Q}^{(1)^{\dagger}} \underline{\underline{A}} \\
&=\underline{\underline{Q}}^{(k)^{\dagger}} \underline{A}^{k} \\
& \Rightarrow \underline{A}^{k}=\underline{Q}^{(k)} \underbrace{\stackrel{R}{R}^{(k)} \cdot \underline{R}^{(k-1)} \cdots \cdots \underline{R}^{(1)}}_{\text {upper triangular ! }}
\end{aligned}
$$

Snice $Q R$-decomposition is unique, this yields the QR-decomposition of k-th power of A ! Thus also: $Q^{(k)}$ is approx. to matrix of eigenvectors

QR- a (govithen (John Francis (1555)/ Vera Kublanoiskava (IS61)) sketch of the ida here on y:
(i) $Q Q$ - decompose $\underline{\underline{A}} \underline{\underline{A}}=\underline{\underline{A}}^{(1)}=\underline{Q}^{(1)} \cdot \underline{\underline{R}}^{(1)}$
(ii) construct $\underline{\underline{A}}^{(2)}=\underline{\underline{R}}^{(1)} \underline{Q}^{(1)}$
(iii) $Q R$ - decompose $\underline{A}^{(2)}=\underline{\underline{Q}}^{(2)} \stackrel{R}{n}^{(2)}$ \& continue from (ii) note that at k-th iteration:

$$
\begin{aligned}
& \underline{\underline{A}}^{(k+1)}=\underline{\underline{R}}^{(k)} \underline{\underline{Q}}^{(k)}=\left(\underline{\underline{Q}}^{(k)}\right)^{\dagger} \underbrace{\underline{Q}^{(k)} \underline{\underline{R}}^{(k)}} \underline{\underline{Q}}^{(k)} \\
& \Rightarrow \underline{\underline{A}}^{(k+1)}=\left(\underline{\underline{Q}}^{(k)}\right)^{\dagger} \cdots\left(\underline{\underline{Q}}^{(k)}\right)^{\dagger} \underline{\underline{A}} \underline{\underline{Q}}^{(1)} \cdots \underline{\underline{Q}}^{(k)}
\end{aligned}
$$

\& hence $\underline{A}^{(k+1)}$ has the same eigenvalues as $\underset{\text { t. }}{ }$. The sequence $\underline{A}^{(4)}$ can be shown fo consort to a triangular matrix. Spice eigenvalues λ_{k} are the wools of the characteristic polynomial fullfally

$$
\operatorname{det}(\underline{A}-\lambda \underline{11})=0
$$

if follows:
If $A^{(k)}$ is upper triangular, then:

$$
\operatorname{dig}{\underset{E}{(k)}=\left(\lambda_{1} \ldots \lambda_{n}\right)}^{A^{(k)}}
$$

the eigen values of \underline{E}.
complexity can be further reduced briguig A to upper Hessenbeg form: $\sim O\left(u^{s}\right)$

Note:

- There are various special cases such as
a) A tri-diajoual
b) A hermitian
c) only $\left\{\lambda_{k}\right\}$ required
d) only smallest λ_{k} required
which drastically speed up computation!
Question: Why does $Q R$-algorithm whrejes fo EVD?
We modify notation:
(i) Denote by $\underline{\underline{A}}^{(h)}=\underline{\underline{Q}}^{(k)} \underline{\underline{R}}^{(h)}$ the matrices obtained un QR -a (gorithm
(ii) Denote by $\underline{\underline{A}}^{(k)}=\underline{\underline{Q}}^{(k)} \underline{\underline{R}}^{(k)}$ the matrices obtained in SO -algorithm
in $Q R$-algonithen we have:

$$
\begin{aligned}
\underline{t}^{k} & =\left(\underline{\underline{Q}}^{(1)} \cdot \tilde{\underline{R}}^{(1)}\right)^{k} \\
& =\underline{\underline{\tilde{Q}}}^{(1)} \cdot \underline{\tilde{R}}^{(1)} \cdot \underbrace{\hat{\mathbb{Q}}^{(1)} \cdot \hat{R}^{(1)}} \cdots \underline{\underline{\tilde{Q}}}^{(1)} \cdot \hat{\underline{\tilde{R}}}^{(1)}
\end{aligned}
$$

now $\underline{\underline{R}}^{(1)} \cdot \underline{\underline{Q}}^{(1)}$ are Hose matrices that are factored in Hae second iteration of QT-alyorithem:

$$
\begin{aligned}
& \Rightarrow \underline{\underline{A}}^{k}=\hat{\tilde{Q}}^{(1)} \cdot \underline{\underline{Q}}^{(2)} \cdot \cdots \underline{\underline{Q}}^{(k)} \cdot \underline{\underline{R}}^{(k)} \cdot \underline{\underline{R}}^{(k-1)} \cdot \cdots \cdot \underline{\underline{R}}^{(1)}
\end{aligned}
$$

From SO-algonithe we know:

$$
\underline{A}^{k}=\underline{Q}^{(k)} \cdot \underline{\underline{R}}^{(k)} \cdot \cdots \cdot \underline{\underline{R}}^{(1)}
$$

since $\underline{\underline{Q}}^{(1)} \cdot \underline{\underline{Q}}^{(2)} \cdot \cdots \cdot \underline{\underline{Q}}^{(4)}$ is unitary by construction, we have from uniqueness of $Q R$-decomposition:

$$
\underline{\underline{Q}}^{(L)}=\tilde{\underline{Q}}^{(1)} \cdot \hat{\underline{Q}}^{(2)} \cdots \cdots()^{(i)} \underline{Q}^{(L)}
$$

\& thus the product of the $\underline{\underline{Q}}^{(j)}$ yield approx. to matrix of eigenvectors of A

Singular value decomposition (SVD)
For every uctanguler matiox $A \in V_{\mathbb{K}}^{m \times n} \quad(m \geqslant n)$ thee exist $\underline{\underline{U}} \in \mathbb{V}_{\mathbb{K}}^{m \times n}, \underline{\underline{S}}, \underline{\underline{V}} \in \mathbb{V}_{\mathbb{K}}^{n \times n}$ with:
(i) $\underline{\underline{A}}=\underline{\underline{U}} \cdot \underline{\underline{S}} \cdot \underline{\underline{V}}$
(ii) $\underline{\underline{u}}^{+} \underline{\underline{u}}=\underline{1}_{m \times m}$
(iii) $\underline{\underline{V}} \underline{\underline{V}}^{+}=\underline{1}_{n \times u}$
(iv) $\begin{aligned} & \underline{S}=\operatorname{diag}\left(s_{1} \ldots s_{n}\right) \quad \text { with } s_{1} \geqslant s_{2} \geqslant \ldots \geqslant s_{n} \geqslant 0 \\ & \text { \& } s_{j}\end{aligned} \in \mathbb{R} \quad l$

Note: In contrast to EVD here we have:
(i) SVD also exists for rectangular unchices
(ii) s_{j} are always real
(iii) $\underline{\underline{U}}^{+} \underline{\underline{U}}=\mathbb{1}_{m \times m} \quad \& \underline{\underline{v}} \cdot \underline{\underline{v}}^{+}=\mathbb{1}_{n \times n} \quad$ always holds time

Best ramble - Lx approximation
Let us try to develop some intuition for the SUD to oppreciente its usefulluess.

Confider the least -square minimization problem:
Let $\underline{a}_{j} \in V_{\mathbb{K}}^{n}, j \in\left\{1_{1} \ldots, m\right\}$ be a set of m ponits. Fid the lime $\underline{v} \in \mathbb{V}_{\mathbb{K}}^{n}$ which minimizes the distance of \underline{v} to all \underline{a}_{j}, project in v to the subspaces spanned by G_{j}.

$$
\underline{V}=\min _{\substack{\underline{x} \in V_{\mid \mathcal{k}}^{n} \\|\underline{x}|=1}} \sum_{j=1}^{m}\left(\left\|a_{j}\right\|^{2}-\left\langle\underline{x} \mid a_{j}\right\rangle\right)
$$

Note that fixing, $a_{j}, \sum_{j=1}^{m}\left\|a_{j}\right\|$ is constant, so fuidén \underline{V} is equivalent to maximizing $\sum_{j=1}^{m}\left\langle\underline{x} \mid \underline{a}_{j}\right\rangle$! Now let $\underline{\underline{A}}=\left(\begin{array}{c}-\underline{a}_{1}- \\ \vdots \\ -\underline{a}_{m}-\end{array}\right) \in \mathbb{V}_{\mathbb{K}}^{m \times n}$. We define the first singular vector \underline{V}_{1} via:

$$
\left.\underline{V}_{1}=\max _{\substack{\underline{x} V_{1 k}^{n} \\|\underline{x}|=1}}|\underline{\underline{A}}| \underline{x}\right\rangle \mid=\max _{\substack{\underline{x} \in V_{/ k}^{n} \\|\underline{x}|=1}} \sum_{j=1}^{m}\left\langle\underline{a}_{j} \mid \underline{x}\right\rangle
$$

$\& S_{1}=|\underline{\underline{A}}| \underline{v}, s \mid$ as the first smigular vector. Now $\left|\underline{v}_{1}\right\rangle$ spans a subspace, which solves the least squares problem. But what about the residual? We quantify it by finding the solution to the problem:

$$
\left.\underline{v}_{2}=\max _{\substack{\underline{x} \in V / k \\|\underline{x}|=1 \\\langle\underline{x}, \underline{\underline{x}})=0}}|\underline{\underline{A}}| \underline{x}\right\rangle\left|, \quad S_{2}=|\underline{A}| v_{2}\right\rangle \mid
$$

In the above sketch:

Coudinne that process we obtain sene: $v_{1}, \ldots, \underline{v}_{r}$ with $\underline{\underline{A}}\left|\underline{v}_{j}\right\rangle$ the solution to the usidnal least square problem:

$$
\left.\left|\underline{v}_{j}\right\rangle=\max _{\substack{v_{i} \in V_{\mid k} \\ v_{i j} \mid=1}}|\underline{A}| \underline{v}_{j}\right\rangle\left|-\sum_{k=1}^{j-1}\right| \underline{\underline{A}}\left|\underline{v}_{k}\right\rangle \mid \& r \leqslant n \text {. }
$$

\& the sequence of singular values S_{j} with: $i<j \Leftrightarrow \delta_{i} \geqslant S_{j}$.
Consequences for $\underset{\underline{A}}{ } \in \mathbb{V}_{k}^{n \times m}, n \geqslant m$.
(i) For suigular vectors $\underline{v}_{1}, \ldots, \underline{v}_{k}, k \leqslant r$, the subspace $V_{k}=\operatorname{spon}\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}\right\}$ is the best fit k-dimensional subspace to \pm.
(ii) Snice for each \underline{v}_{j} the norm $\left.|\underline{\underline{A}}| v_{j}\right) \mid$ gives the summed squared components along \underline{v}_{j}, it follows immediately :

$$
\begin{aligned}
\sum_{j=1}^{m}\left|\underline{a}_{j}\right|^{2} & =\sum_{j_{1}=1}^{r}\left|\left\langle\underline{v}_{k} \mid \underline{a}_{j}\right\rangle\right|^{2} \\
& \left.=\sum_{k=1}^{r}|\underline{\underline{I}}| v_{j}\right\rangle\left.\right|^{2}=\sum_{k=1}^{r} S_{k}^{2}
\end{aligned}
$$

On the other hand $\left|a_{j}\right|^{2}=\sum_{k=1}^{n}\left|a_{j k}\right|^{2}$
Thus the summed, squared snipular values yield the Frobenins norm of A:

$$
\|\stackrel{A}{\underline{A}}\|_{F}=\sum_{k=1}^{r} s_{k}^{2}
$$

(iii) Spice any $\underline{x} \in V_{\mathbb{K}}^{n}$ can be written as

$$
|\underline{x}\rangle=\sum_{j=1}^{r}\left\langle\underline{v}_{j} \mid \underline{x}\right\rangle\left|\underline{v}_{j}\right\rangle+\left\langle\underline{v}^{\perp} \mid \underline{x}\right\rangle\left|\underline{v}^{\downarrow}\right\rangle
$$

Since also $\underline{\underline{E}}\left|\underline{v}^{\underline{1}}\right\rangle=0$, we can define a new get of basis vectors

$$
\left|\underline{u}_{j}\right\rangle=\frac{1}{S_{j}} \underline{\underline{A}}\left|\underline{v}_{j}\right\rangle
$$

\& it can be shown that:

$$
\underline{\underline{A}}=\sum_{j=1}^{v}\left|\underline{u}_{j}\right\rangle\left\langle\underline{v}_{j}\right| S_{j}
$$

From (i), (ii) \& (iii) it follows:
For a given $k \leq n$, the matin

$$
\underline{A}^{(k)}=\sum_{j=1}^{k}\left|\underline{u}_{j}\right\rangle\left\langle\underline{v}_{j}\right| s_{j}
$$

is the best rank. k approximation w.r.t. the Frobenins norm:

$$
\underline{\underline{A}}^{(k)}=\min _{\underline{\underline{x}} \operatorname{ranh} k}\|\underline{\underline{A}}-\underline{\underline{X}}\|_{F}
$$

