IV Exact diagonatization
From now on we will work with some discrete upusentation of phys systems using second qua tization:
$\mathrm{H}_{j} \hat{=}$ Hilbert space of local desire of freedom "j". Also reseed to as: lattice sites, orbitals..

$$
1 t^{L}=N H_{1} \otimes H_{2} \otimes \cdots \otimes H t_{L}
$$

$\hat{=}$ Hilbert space of L local depress of feeclom

$$
H t_{N}^{L} \subseteq H^{L}
$$

\cong subspace describing N occupied local degrees of freedom

Let $\hat{H}: H^{L} \rightarrow H^{L}$ be the Hamiltonian of a system of L siteslorbitals. How do we efficiently solve the eigenvalue problem of \hat{H} ?
IV. 1 Quadratic Hamiltomians

Denote by $\left\{\hat{0}_{j}^{\alpha}\right\}_{\alpha \in \mathbb{N}}$ the set of local operators acting on H_{j} with dimension $\operatorname{din}\left(1_{j} j\right)=d$ such, that $\left\{\hat{O}_{j}^{k}\right\}$ is a complete basis of operators aching on Ni j.
In second quantitation we distinguish between:
(i) Occupation number operators satisfying
(a) $\hat{O}_{j}{ }^{x}$ is hermitian
(b) Eipenstates $\left|\sigma_{j}\right\rangle$ of \hat{O}_{j}^{α} span a couplet OMB
(ii) Ladder operators satisfy ω_{j} :
(a) $\hat{O}_{j}^{\alpha}\left|\sigma_{j}\right\rangle \propto\left|\sigma_{j}-1\right\rangle$ or zero
(b) $\left.\left(\hat{o}_{j}^{k}\right)^{\dagger}\left|\sigma_{j}\right\rangle \propto \mid \sigma_{j}+1\right)$ or zero
(c) $\left[\hat{O}_{i}^{k},\left(\hat{O}_{j}^{k}\right)^{\dagger}\right]_{ \pm}=\delta_{i j}$ (\pm for commutators/ auticoummantors)
(d) $\left(\hat{O}_{j}^{\alpha}\right)^{\dagger}\left(\hat{O}_{j}^{\alpha}\right) \propto \hat{O}_{j}^{\beta}$ with \hat{O}_{j}^{β} an occupaction number operator.

Examples
(j) Spiles Fermions $(d=2)$:
basis of local operators given by $\frac{1[j}{}, \hat{c}_{j i} \hat{c}_{j}^{+}, \hat{n}_{j}$ and

$$
\left\{\hat{c}_{i,} \hat{c}_{j}^{+}\right\}=\delta_{i j}, \quad \hat{n}_{j}=\hat{c}_{j}^{+} \hat{c}_{j}
$$

(ii) Spin $-\frac{1}{2} \quad(d=2)$:

Basis of local operators fire by $\mathbb{1}_{j}, \hat{S}_{j}, \hat{S}_{j}, \hat{S}_{j}^{z}$ and

$$
\left[\hat{S}_{i}^{-}, \hat{S}_{j}^{+}\right]=\delta_{i j}, \quad \hat{S}_{j}^{z}=\frac{1}{2}\left(\frac{11_{j}}{}-2 \hat{S}_{j}^{+} \hat{S}_{j}^{-}\right)
$$

In general, Hamiltoniaus are of the form

$$
\hat{H}=\underbrace{\sum_{j} \sum_{\alpha} h_{j}^{\alpha} \hat{O}_{j}^{\alpha}}_{\text {luisur in } \hat{0}_{j}^{\alpha}}+\underbrace{\sum_{i, j}^{2} \sum_{\alpha, \beta} h_{i j}^{\alpha \beta} \hat{O}_{j}^{\alpha} \hat{o}_{j}^{\beta}}_{\text {quadr. in } \hat{o}_{j}^{k}}+\cdots
$$

Consider now an important case:
If \hat{H} is quadratic in fermionic ladder operators, we can find its eigenvalues \& states by dicjoualizíy a matrix scaly linear in L !

Let $\hat{C}_{j}^{t}, \hat{C}_{j}$ be the fermionic (adder operators \& confider quadr. Hamill (tomiau:

$$
\hat{H}=\vec{\nu}_{i, j}\left(h_{i j} \hat{c}_{i}^{+} \hat{c}_{j}+\Gamma_{i j} \hat{c}_{i} \hat{c}_{j}-\Gamma_{i j}^{*} \hat{c}_{i}^{\dagger} \hat{c}_{j}^{\dagger}\right)
$$

with $h_{i j}^{*}=h_{j i}$.
We introdue operator-valued füeds:

$$
\hat{\psi}^{+}=\left(\begin{array}{llll}
\hat{c}_{1}^{+} & \hat{c}_{2}^{+} & & \cdots \\
\hat{C}_{L}^{+}
\end{array}\right), \quad \underline{\psi}=\left(\begin{array}{c}
\hat{c}_{1} \\
\hat{c}_{2} \\
\vdots \\
\hat{c}_{L}
\end{array}\right)
$$

Then, \hat{H} can be written as formal bilinear form:

$$
\begin{aligned}
& \hat{H}=\left(\begin{array}{lll}
\hat{\psi}^{+} & \hat{\psi}^{t}
\end{array}\right) \underbrace{\left(\begin{array}{ll}
\underline{\underline{h}} & -\underline{\Gamma^{*}} \\
\underline{\underline{\Gamma}} & -\underline{h}
\end{array}\right)}_{\underline{\underline{H}}}\left(\begin{array}{l}
\hat{\psi} \\
\hat{\psi}^{*} \\
\underline{\underline{\psi}}
\end{array}\right) \text { with } \hat{\psi}^{*}=\left(\hat{\psi}^{*}\right)^{t}
\end{aligned}
$$

Snice \xrightarrow{H} is hermitian, it can be diajoualixed. Denote r by ϵ_{α} the eigenvalues $A \underline{v}_{\alpha}$ the corries pondūj ipa vectors of H.

It then follows:

$$
\hat{H}=\left(\begin{array}{ll}
\hat{\psi}^{+} & \hat{\psi}^{t}
\end{array}\right)\left(\begin{array}{ccc}
1 & & 1 \\
\underline{v}_{1} & \cdots & \underline{v}_{2 L} \\
1 & & 1
\end{array}\right)\left(\begin{array}{ccc}
\epsilon_{1} & & 0 \\
& \ddots & \\
0 & & \epsilon_{2 L}
\end{array}\right)\left(\begin{array}{c}
-\underline{v}_{1}^{*}- \\
\vdots \\
-\underline{v}_{2 L}^{*}
\end{array}\right)\left(\begin{array}{c}
\hat{\psi} \\
- \\
\hat{\psi}^{*} \\
-
\end{array}\right)
$$

We split the components of the \underline{v}_{α} 's:

$$
\underline{v}_{\alpha}=\left(\begin{array}{c}
v_{1 \alpha}^{+} \\
\vdots \\
v_{L \alpha}^{+} \\
v_{i \alpha}^{-} \\
\vdots \\
v_{L \alpha}^{-}
\end{array}\right) \Rightarrow\left(\hat{\psi}^{+} \hat{\psi}^{t}\right) \cdot \underline{v}_{\alpha}=\sum_{j=1}^{L}\left(\hat{C}_{j}^{+} v_{j \alpha}^{+}+\hat{c}_{j} v_{j \alpha}^{-}\right)
$$

so that:

$$
\begin{aligned}
\hat{H} & =\sum_{\alpha=1}^{2 L} \sum_{\beta=1}^{2 L}\left\{\sum_{j=1}^{L}\left(v_{j \alpha}^{+} \hat{c}_{j}^{\dagger}+v_{j \alpha}^{-} \hat{c}_{j}\right)\right\} \delta_{\alpha \beta} \epsilon_{\alpha}\left\{\sum_{m=1}^{L}\left(\bar{v}_{m \beta}^{+} \hat{c}_{m}+\bar{v}_{m \beta}^{-} \hat{C}_{m}^{\dagger}\right)\right\} \\
& =\sum_{\alpha=1}^{2 L} \epsilon_{\alpha} \sum_{j=1}^{L}\left(v_{j \alpha}^{+} \hat{c}_{j}^{+}+v_{j \alpha}^{-} \hat{c}_{j}\right) \sum_{m=1}^{L}\left(\bar{v}_{m \beta}^{+} \hat{c}_{m}+\bar{v}_{m \beta}^{-} \hat{c}_{m}^{+}\right)
\end{aligned}
$$

Le f us define:

$$
\begin{aligned}
& \hat{\varphi}_{\alpha, t}^{+}=\sum_{j=1}^{L} v_{j \alpha}^{+} \hat{c}_{j,}^{\dagger} \quad \hat{\varphi}_{\alpha,-}^{+}=\sum_{j=1}^{L} v_{j \alpha}^{-} \hat{c}_{j} \\
\Rightarrow & \hat{H}=\sum_{\alpha}, \epsilon_{\alpha}\left(\hat{\varphi}_{\alpha,+}^{+}+\hat{\varphi}_{\alpha,-}^{+}\right)\left(\hat{\varphi}_{\alpha,+}+\hat{\varphi}_{\alpha,-}\right)
\end{aligned}
$$

Now let us deduce un important property of H from the fact that \hat{H} is quadratic.
consider the particle-hole transformation:

$$
\begin{equation*}
\hat{c}_{j}^{t} \mapsto \hat{c}_{j} \quad, \quad \hat{c}_{j} \mapsto-\hat{c}_{j}^{t} \tag{49}
\end{equation*}
$$

$$
\begin{aligned}
& \Rightarrow \hat{H} \mapsto \hat{H}=-\sum_{i, j} h_{i j} \hat{c}_{i} \hat{c}_{j}^{\dagger}+\sum_{i j}^{2}\left(\hat{\Gamma}_{i j} \hat{c}_{i}^{+} \hat{c}_{j}^{+}-\Gamma_{i j}^{*} \hat{c}_{i} \hat{c}_{j}\right) \\
& =\left(\begin{array}{ll}
\hat{\psi}^{t} & \hat{\psi}^{\dagger}
\end{array}\right)\left(\begin{array}{cc}
-\underline{\underline{h}} & -\underline{\Gamma}^{*} \\
\Gamma & \underline{\underline{h}}
\end{array}\right)\binom{\hat{\psi}^{*}}{\underline{\underline{\psi}}} \\
& \dot{!}\left(\begin{array}{ll}
-\hat{\psi}^{\dagger} & \hat{\psi}^{t}
\end{array}\right)\left(\begin{array}{cc}
-\underline{\underline{h}} & -\underline{\Gamma}^{*} \\
\underline{\underline{\Gamma}} & \underline{\underline{h}}
\end{array}\right)\binom{\underline{\hat{\psi}}}{-\hat{\psi}^{*}} \\
& =\left(\begin{array}{ll}
\hat{\psi}^{\dagger} & \hat{\psi}^{t}
\end{array}\right)\left(\begin{array}{cc}
\underline{\underline{h}} & -\underline{\underline{n}}^{*} \\
\underline{\underline{\eta}} & -\underline{\underline{h}}
\end{array}\right)\binom{\hat{\psi}}{\hat{\hat{\psi}}^{*}}
\end{aligned}
$$

$\Rightarrow H$ uivanand under P-H-transforcmation.
\Rightarrow Eipuralues of H come in pairs with ϵ_{α} eigenvalue, then $-\epsilon_{\alpha}$ eigenvalue, too! proof: $\left|v_{\alpha}\right\rangle$ eigenvector with eigenvalue ϵ_{α}, them $\underline{U}_{P H}\left|v_{\alpha}\right\rangle$ is eigenvector, too. Since $\underline{\underline{U}}_{P H}^{2}=11$ it is $\underline{\underline{U}}_{P H} \hat{\underline{H}}\left|v_{\alpha}\right\rangle=e^{i \varphi_{\alpha}} \epsilon_{\alpha}\left|v_{\alpha}\right\rangle$ \& from $T r H=0$ we have $\varphi_{a}=\pi$.

Furthermore, H can be block-diajoualized!

We can already read-off the block-diajoual form:

$$
\hat{H}=\sum_{\alpha} \vec{a}_{1}\left(\epsilon_{\alpha} \hat{\varphi}_{\alpha_{1}+}^{+} \hat{\varphi}_{\alpha_{1}+}-\epsilon_{\alpha} \hat{\varphi}_{\alpha_{1}-}^{+} \hat{\varphi}_{\alpha_{1}-}\right)
$$

We checle the ante-commutatos:

$$
\left.\left.\begin{array}{rl}
\left\{\hat{\varphi}_{\alpha, \pm} \quad \hat{\varphi}_{\alpha, \pm}^{+}\right.
\end{array}\right\}=\sum_{j, m}^{\urcorner} V_{j, \alpha}^{ \pm} \bar{V}_{m, \alpha}^{ \pm}\left\{\hat{C}_{j}, \hat{C}_{m}^{\dagger}\right\}\right\}
$$

Thus, the $\hat{\varphi}_{\alpha, \pm} \pm$ create eire states of \hat{H} !
Then for any $\operatorname{set}\left(n_{1,+} \ldots n_{L_{1}-}\right)$ with $n_{\alpha, \nu} \in\{0,1\}$ the product state:

$$
\prod_{\alpha=1}^{L}\left(\hat{\varphi}_{\alpha_{1}+}^{+}\right)^{n_{\alpha_{1}+}}\left(\hat{\varphi}_{\alpha_{1}-}^{+}\right)^{n_{\alpha_{1}-}}|\varnothing\rangle
$$

is eipengtate of \hat{H} with ene $e y) \sum_{\alpha_{1} \mu}(-1)^{\mu} \epsilon_{\alpha}$.

Interlude: Finite size effects
@ quantum phase transitions
Quantum phase tomsitions can be characterized by a gap-closujlopenin. What happens in such "critical" systems at finite system sites?

Consider a critical system, i.e. the eng difference between ground stake E_{0} \& first excited state E_{1} satisfy:

$$
\lim _{L \rightarrow \infty} E_{1}-E_{0} \rightarrow 0
$$

Typical situation: Level crossing! Let system be parametrized by parameter h (egg. unguetic field)

\Rightarrow Expand ED around h_{c} :

$$
E_{0}\left(\left.h\right|_{h_{c}}=E_{0}\left(h_{c}\right)+\left\{\begin{array}{l}
\left.\frac{\partial E}{\partial h}\right|_{h>h_{c}}\left(h-h_{c}\right)+\theta\left(\left(h-h_{c}\right)^{2}\right) \\
\left.\frac{\partial E}{\partial h}\right|_{h i h_{c}}\left(h-h_{c}\right)+\theta\left(\left(h-h_{c}\right)^{2}\right)
\end{array}\right.\right.
$$

$\lim _{k \text { she }} \& \lim _{n \rightarrow 2}$

$$
\begin{aligned}
& \text { symuetric } \\
& \text { syppical } \\
& \text { systems }
\end{aligned}=E_{0}\left(h_{c}\right)+\left|\frac{\partial E}{\partial h}\right|_{h=h_{c}}\left|h-h_{c}\right|+\theta\left(\left(h-h_{c}\right)^{2}\right)
$$

Shis limeor spectunum near hc hics inportant consequencis! In particular, order parametes are described by:

$$
o \sim\left\{\begin{array}{cl}
\left(h-h_{c}\right)^{-\beta} & h<h_{c} \tag{*}\\
0 & h>h_{c}
\end{array}\right.
$$

in themodgnamic linit. On the othe hand we hak:

$$
\begin{aligned}
O & =\sum_{n}^{?}\left\langle E_{n}\right| \hat{O}\left|E_{m}\right\rangle \\
& =\sum_{n}^{?} \sum_{m}^{?} \cdot\left|\left\langle E_{n} \mid O_{m}\right\rangle\right|^{2} O_{m} \quad \text { with } \quad \hat{O}\left|O_{m}\right\rangle=O_{m}\left|O_{n}\right\rangle .
\end{aligned}
$$

At nou-analgeity (*) can ong arise if $L \rightarrow \infty$! However, at fuibite system sites O as a funclion of L can be writter as (no proof here):

$$
O(L)=L^{-\alpha} f\left(L^{-\gamma}\left(h-h_{c}\right)\right)
$$

We can thus plot $O(L) \cdot L^{\alpha}$ over $h-h_{c}$ \& identify h_{c} by the point where these limes cross:

IV. 2 Krylor space methods

Problem in exact diajomatization:
Operators upresented as matrices grow $\sim d^{2 L}$!
Rut most operators are sparse! Can we use this fact to each larger system sizes?
Answer: Yes, if we are happy with ouly a few eigenstates! ... which is mostly sufficient!

But first some wore precise nutation:

- Rep. of tensor produce basis

Let $\{|0|,|1|, \ldots|d-1\rangle\}$ be basis of one sik/orbital we upresent states in the tensor product Htilbot space HL in terms of basis states $|\underline{n}\rangle=\left|u_{1}\right\rangle \otimes\left|u_{2}\right\rangle \otimes \cdots \otimes\left|u_{L}\right\rangle$ The \underline{u}^{\prime} th basis state is given by the unit vector $\underline{E}_{F(\underline{n})}$ with:

$$
\begin{align*}
& F(\underline{n})=\sum_{j=1}^{2} n_{j} \cdot d^{(j-1)} \\
\Rightarrow \underline{e}_{F(n)} & =\left(\begin{array}{lllllll}
0 & 0 & \cdots & 0 & 1 & 0 & \cdots
\end{array}\right) \tag{55}
\end{align*}
$$

- An operator \hat{H} on At $_{L}$ with

$$
\hat{H}=\sum_{\underline{n}, \underline{m}}\langle\underline{n}| \hat{H}|\underline{m}\rangle|\underline{n}\rangle\langle\underline{m}|
$$

maps basis states: $\underline{e}_{F(\underline{m})} \longmapsto\langle\underline{n}| \hat{H}|\underline{m}\rangle \underline{e}_{F(\underline{n})}$

- For sparse operators, the number of non-vanishig matrix elements $\langle\underline{n}| \hat{H}|\underline{u}\rangle \neq 0$ scales polynomially in L :

$$
N(L)=\left|\left\{|\underline{u}\rangle,|\underline{m}\rangle \in \mathbb{H}_{L} \mid\langle\underline{u}| \hat{H}|\underline{m}\rangle \neq 0\right\}\right| \sim O\left(L^{a}\right)
$$

Consider the expansion of \hat{H} in terns of k-point couplings:

$$
\begin{aligned}
\hat{H} & =\sum_{j} \sum_{\alpha} h_{j}^{\alpha} \hat{O}_{j}^{\alpha}+\sum_{i, j}^{2} \sum_{\alpha, \beta} h_{i j}^{\alpha \beta} \hat{O}_{j}^{\alpha} \hat{O}_{j}^{\beta}+\cdots \\
& \equiv \hat{H}^{(1)}+\hat{H}^{(2)}+\cdots
\end{aligned}
$$

where \hat{O}_{j}^{α} denote local operators (in $2^{\text {nd }}$ quantization).

$$
\Rightarrow W\left(\hat{H}^{(1)}\right) \sim O(L), N\left(\hat{H}^{(2)}\right) \sim \theta\left(L^{2}\right), \ldots, N\left(\hat{H}^{(L)}\right) \sim \theta\left(L^{L}\right)
$$

\Rightarrow Operators with "local", i.e. $K \ll L$, coupling terms
are always sparse!
We conclude:
Using sparsity, the action of an operator 80 a state can be evaluated with costs $\sim \theta\left(L^{k}\right)$!

Question: Can we wasted a basis such that only sparse operator applications are required to find eipuralues/-vectors?

The Lanczos method
Consider the eiguvalue problem:

$$
\hat{H}|\psi\rangle=E|\psi\rangle \text { for hermitian- } \hat{H}
$$

Solving this for the ground state is equivalent to find $\left|\psi_{0}\right\rangle$ via minimization of the Raybijh - Ritz quotient:

$$
\left|\psi_{0}\right\rangle=\underset{|\psi\rangle \in \mathcal{H}_{L}}{\operatorname{argmin}} \frac{\langle\psi| \hat{H}|\psi\rangle}{\langle\psi \mid \psi\rangle}
$$

Led $|\psi\rangle=2_{n}^{2} c_{n}\left|\varphi_{n}\right\rangle$ for a basis set $\left\{\left|\varphi_{n}\right\rangle\right\}_{n=1 . . k}$
with $K \leq \operatorname{din}\left(H_{L}\right)=d^{L}$. Then minimization means to find $\nabla_{\subseteq}\langle\psi| \hat{H}|\psi\rangle=0$ under the constranif $\langle\psi \mid \psi\rangle=1$. Introducing Lagrange multiplier α we gel:

$$
\underline{\nabla}_{c}(\langle\psi| \hat{H}|\psi\rangle-\alpha(\langle\psi \mid \psi\rangle-1)) \stackrel{!}{=} 0
$$

Using $\langle\psi| \hat{H}|\psi\rangle=\sum_{n_{1} m}^{l_{m}}\left\langle\varphi_{n}\right| \hat{H}\left|\varphi_{m}\right\rangle C_{n}^{*} C_{m}$

$$
=\left(\begin{array}{lll}
c_{1}^{*} & \cdots & c_{k}^{*}
\end{array}\right)\left(\begin{array}{ccc}
h_{11} & \cdots & h_{1 k} \\
\vdots & & \vdots \\
u_{k 1} & \cdots & h_{k k}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{k}
\end{array}\right)
$$

as well as $\langle\psi \mid \psi\rangle=\sum_{n}^{2}\left|c_{n}\right|^{2}=\left(c_{1}^{*} \cdots c_{k}^{*}\right)\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{k}\end{array}\right)$
we fid:

$$
\begin{aligned}
& \text { we fid: } \\
& \nabla_{c^{*}}\langle\psi| \hat{H}|\psi\rangle=\sum_{j=1}^{W} \sum_{m=1}^{k} e_{j} h_{j m} c_{m} \dot{H}|\psi\rangle \\
& \nabla_{c^{*}}\langle\psi \mid \psi\rangle=\sum_{j=1}^{K} e_{j} c_{j} \dot{=}|\psi\rangle \\
& \Rightarrow \nabla_{\underline{c}}(\langle\psi| \hat{H}|\psi\rangle-\alpha(\langle\psi \mid \psi\rangle-1)=\hat{H}|\psi\rangle-\alpha|\psi\rangle
\end{aligned}
$$

Thus, $-(\hat{H}|\psi\rangle-\alpha|\psi\rangle)$ gives the "direction" an which $\langle\mu| \hat{H}|\psi\rangle$ can be reduced most efficiently
(steepest decent):

Led us use this to constanct a basis starting from some guess $\left|\varphi_{1}\right\rangle$ with $\left\langle\varphi_{1} \mid \varphi_{1}\right\rangle=1$:

$$
\left|v_{1}\right\rangle=\hat{H}\left|\varphi_{1}\right\rangle-\alpha\left|\varphi_{1}\right\rangle
$$

From lines algebra we know that optimal α is such that $\left\langle V_{1} \mid \varphi_{1}\right\rangle=0$ (projection ito tampers Space)

$$
\Rightarrow \quad\left\langle\varphi_{1} \mid v_{1}\right\rangle=\left\langle\varphi_{1}\right| \hat{H}\left|\varphi_{1}\right\rangle-\alpha \stackrel{!}{=} 0 \Rightarrow \alpha=\left\langle\varphi_{1}\right| \hat{H}\left|\varphi_{1}\right\rangle
$$

Finally define $\left|\varphi_{2}\right\rangle=\frac{\left|V_{1}\right\rangle}{\sqrt{\left\langle y_{y} \mid V_{1}\right\rangle}}$ for normalization.
Note $t \operatorname{ar}\left|\varphi_{2}\right\rangle \in \operatorname{span}\left\{\left|\varphi_{1}\right\rangle, \hat{H}\left|\varphi_{1}\right\rangle\right\}$.
Now express \hat{H} in that basis:

$$
\hat{H}^{\mid 1)}=\left(\begin{array}{ll}
\left\langle\varphi_{1}\right| \hat{H}\left|\varphi_{1}\right\rangle & \left\langle\varphi_{1}\right| \hat{H}\left|\varphi_{2}\right\rangle \tag{59}\\
\left\langle\varphi_{2}\right| \hat{H}\left|\varphi_{1}\right\rangle & \left\langle\varphi_{2}\right| \hat{H}\left|\varphi_{2}\right\rangle
\end{array}\right)=\left(\begin{array}{ll}
\alpha_{1} & \beta \\
\beta^{*} & \alpha_{2}
\end{array}\right)
$$

with

$$
\beta=\left\langle\varphi_{1}\right| \hat{H}\left|\varphi_{2}\right\rangle=\left(\left\langle v_{1}\right|+\alpha^{*}\left\langle\varphi_{1}\right|\right)\left|\varphi_{2}\right\rangle=\left\langle v_{1} \mid \varphi_{2}\right\rangle=\sqrt{\left\langle v_{1} \mid v_{1}\right\rangle}
$$

Solving the eigen value equation for $\hat{H}^{(1)}$ yields an approx. to the solutions of the eigenvalue problem:

$$
\left|\psi^{(1)}\right\rangle=c_{1}^{(1)}\left|\varphi_{1}\right\rangle+c_{2}^{(1)}\left|\varphi_{2}\right\rangle
$$

with $\hat{H}^{(1)}\left|\psi^{(1)}\right\rangle=E^{(1)}\left|\psi^{(1)}\right\rangle$.
Note:
(i) The energy cost-function is convex! There are no local minima!
(ii) Iterating this procedure using $\left|\psi_{0}^{(1)}\right\rangle$ (giondstate of $\hat{H}^{(0)}$) to construct

$$
\left|v_{2}\right\rangle=\hat{H}\left|\psi_{0}^{(1)}\right\rangle-\left\langle\psi_{0}^{(1)}\right| \hat{H}\left|\psi_{0}^{(1)}\right\rangle\left|\psi_{0}^{(1)}\right\rangle
$$

yields power -method like algorithm
(ii:) Defining the residual $\left(\hat{H}-E^{(n)}\right)\left|\psi_{0}^{(n)}\right\rangle \equiv\left|\sigma^{(n)}\right\rangle$
60
we can measuse whvergence gince

$$
\begin{aligned}
\left\langle\underline{r}^{(n)} \mid \underline{v}^{(n)}\right\rangle & =\left\langle\psi_{0}^{(n)}\right|\left(\hat{H}-E^{(n)}\right)^{2}\left|\psi_{0}^{(n)}\right\rangle \\
& =\operatorname{Var}\left[\left|\psi_{0}^{(n)}\right\rangle\right]
\end{aligned}
$$

