
#Exact diagonalization

From now on we will workwith some

discrete representation of phys systems aimg

second quantitation:

Is =Hilbot space of local desre of freedom

"". Also refered to as:lattice siles, orbitals..

1=Her...1

=Hilbert space of L local degrees of freedom

ICH
Isubspace describing N occupied local

degrees of freedom

Let F:1-14 be te Hamiltonian of

a system of 2 sites/orbitals. How do we

efficientlysolve the eigenvalue problem of II?
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I. 1 Quadratis Hamiltonians

Demote by 90;ei the set of local operators

acting on itswithdimension din Htj) =d such,

that 30?) is a complete basis of operators aching
on Hj.

In second quantitation we distinguish between:

(i) Occupation number operators satisfying

a) Öj" is hermitian

(b) Eigenstabs (5) of Ispan a complete

ONB

sii) Ladder operators satisfywig:
(a) 8, 15j) a 155-1) or zevo

(3) (85)155) a 15+1) or zero

c) Co.,10.1 =bigIIfor commudators/
an ti commentators)
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ca) (?)(8j) a 8with I am occu-

pation number operator.

Examples

(i) Spiless Fermious (d =2):

Basis of local operators given by Alt, j
auch

5,3 =dij =j

(ii) Spin -1(d=2):

Basis of local operators given by j, j, I
und

(5,,,] =dij,5 =(1j - 25,5j)

In general, Hamiltonians are of the form

M =

hröshasa
re
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Consider now an important case:

If I is quadratic infermionic ladder operators,

we can find its eigentales & states by
diagonalizinga matrixscalignear inL!

Let âj,;be the fermionic ladder operators &

consider quadr. Hamiltonian;

1 =(jj +4ij,j - re
with hit =hji.

We introduce operator-valued filds:

lt ...), =l
Then, I can be written as formal

bilinear form: ꋽ



i =4) w *4
=>I

i ="ti
Suice It is hermitian, it can be diagonalized.

Demote byto the eigenvalues & Inte

corresponding eigen vectors of #.

It them follows:

4 =(I4(y,--fa))...E)!=)(r)
We splitthe components of the Ea's:

⑲



=Ilve
so that?

Bildtllüm rüp
=iE+ymptl
Let us define:

L
2 et

+=EY, 9 - 2
ja j

=>I1 =2 =(Ya!+ga!_) (Ya,++Ya,)

Now let us deduce an important property of E
from the fact that It is quadratic.
consider the particle-hole transformation:

!it j Ijr -

t
6 ⑲



=>Hr=-j +2 -4

I-
- 4)( )(

=>Il vivariant under P-H-transformation.

=>Eivalues of I come inpairs with

to eenvalues, then - da eigenvalue, food

Proof:(v) eigenrector with eigenvalue ta, tan

Upy IV) is eigenvector, too. Snice 1 A
=

it is 1PHIva) =eealva) & fromTUE=0

we
have Ya=i.

Furthermore, I can be block-diagonalized!
So



We can already read-off the block-diagonal

from:

4 =z. ItYa Ya, - ta YTa

We check the cute-commutadors:

EYr,I;Yat=a mâ Ej,n

-Eva =1

Thus, the at create eigen states of I!

The for any set (r.......) with name 90,13

the product state:

(at)"(at)18
is expostate of I with every (Dea.
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Interlude:Finitesite effects
& quantum phase transitions

Quantum phase transitions can be characterized

by a gap-closing lopening. What happens in

such "critical" systems at finide system
sizes?

Consider a critical system, i.e. the energy
difference between ground stal to & first

excited state E, salisfy:
In E, - E. +0

Typical situation:Level crossing!
Let system

be paramelized by parameter h (e.g. magnetic field
E
N ka

-h
El Eo

EE
->Expand Es around he:
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Er(hInn =Eo(k)
+{ inte einei

lin d ein
Gaha hiha

symmetris-
intypical =Eo(ka) + (äl =2,(h - ka) +d)(h -hd4)
systems

This linear spectrum near he has important

consequences!
In particular, order parameters are

described by!

E
In -he)

- P
hah,

(*)
02 0 ach,

in themodynamic limit. On the other hand we have:

0 =2(Enl ÖlEn)

=?ZiEnlOmbIOm with 10m) =0m10m3.

A non-analcity (*) can only arise if ( -0!

However, at funite system sizes O as a function

of I can be written as no proof here:

0() =2
-

f(
-

0(n - 4d))

⑤



We can thus plot 01): 2" ovr h-ha &

identify he bythe point where these lines

CrOSS: 0K)L
- *

L

A" >h
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1.2 Krylor space
methods

problem in
exact diagonalization:

Operators represented as madvices grow wah!

But most operators are sparse! Can we use this

fact to reach larger system sizes?

Answer:Yes, if we are happy with only a few

eigenstates! ...

which is mostly sufficiet!

But first some more pucise modation:

. tepof teusor productbasis

Led [10), 113, ... 1d-1] be basis of one sile/orbital

we represent states inthe tensor product Hilbot space is
in terms of basis states (1) =(n,)*(n) * ... (n)

The y'th basis state is given by the unit

vector CF() with:
L

F(y) =E,j.d!
-

=>

eF()
=(00 ...010...0)

↑element F(n) ꋻ



· An operator It on 12 with

4 =zm(((m)(n) (m)

maps basis states:2F(m) - (1F(M) 1F(n)

. For sparse operators, the
number of non-vanishin

madvixelemends (111)
=0 scales poly-

nomially in1:

N() =({(1), (m) ->H2/(A1(2) +031 -0((a)

Consider the expansion of I in terms of k-pont

couplins:

i =240; +h+...
=>I") I 4() +...

where I demode local operators (in 2nd quantitation).

=>NI") -OCL), NSI")-OCLY, ..., WIE*)-OLLY

=>Operators with "local", i.e. KL, coupling tens
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are always sparse!

We conclude:

Using sparsity, the action of an operator to a

state can be evaluated with costs -o(LY)!

Question:Can we construct a basis auch that

only sparse operator applications are

required to find eipnvalues/- vectors?

The Lanszos method

Consider the eigen value problem:

#143 =E14) for hermitia - #.

Solving this for the ground stateis equivalent to find
Ho) via minimization of the Rayhigh - Rift quotient:

Mr) =an
Le6 143 =3?<nlYu) for a basis set Elysn-k



with k din Ht)=d? Then minimitation menus

to find *2 (41114) =0 under the constract

(414)= 1. Introducing Lagrary multiplier x we

gt:((4114) - x(414) - 1)) =0

Using (41#14) =Ei YulF(fu) cn*cm

=... all"...li
as well as 4414) =121 =(,...) (in)
we fuid:

**(4414) =2,him =F143

Ic*4414) =2,2jc; =14)

=>F(414) - 9/4143 - 11 =F14) - x14)

Thus, -IF(14) - 914)) gives the "direction"inwhich

S4/14) can be reduced most efficiently
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Istespest decent):
d2
#

f= (14) - ak+14)- 1))

>
13

Let us use this to construct a basis starting from
some guess 1413 with 14,14) =1:

(V) =F14) - x14,2

From linea abgebra we know that optimal x is such

that (4,14,3 =0 (projection ido tampet space)

=>cy, 14)
=(y, 1414,) - x =0 =x=(y,(#14)

Finally define M2) =is for normalization.

Note Hab 142) e span [14,3, F14,33.

Now express II in that basis:

selly, <4,11423
= Imal cane)=(i) s



with

B
=(4,141y) =((r,) +x

+4,1) (42) =(4,(Yz) =x)

solving the ee
value equation for I" yulds

an approx.
to the solutions of the eigenvalue problem:

14"=c,14, +c.(42)

with 114" =E"14").

Note;

(i) The energy cos6-function is convex! There

are no
local minimal

siil Iterating this procedure using 14) (groudstate
06 F) to construct

(2) =F14!) - 44:"141487148

yelds power-method like algorithm

(iii) Defining the residual (H - (((() =(4)
ꌀ



we can measure convergence since

(w()(w(n)) =(4!")(I - E(3,

- Var (1!)]

⑥


