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On this sheet we realize an efficient, yet conceptionally simple, Monte-Carlo sampling to generate
configurations of spin-1/2 degrees of freedom, distributed according to the Boltzmann statistics,
using cluster algorithms. We will consider the Ising model on a square lattice in d = 2 dimensions
with L2 lattice sites (L ∈ N, J > 0) and periodic boundary conditions:

Ĥ = −J
∑
⟨i,j⟩

ẐiẐj (1)

and choose as computational basis the Pauli Ẑ-operator eigenstates |σj⟩ with σj ∈ {+1,−1} ≡ S.
The goal is now to draw samples of configurations C ∈ SL2

that are distributed according to
the Boltzmann distribution p(C) = e−βE[C]/Zβ at an inverse temperature β = 1/T and E[C]
denotes the energy of the configuration C. Once this is achieved, we can estimate observables
(here functions of Pauli Ẑ-operators) by calculating expectation values with respect to a set of
generated samples C ⊂ SL2

:

⟨Â⟩ ≈ Ā =
1

|C|
∑
C∈C

A[C] . (2)

Problem 1 A Markov chain for cluster updates (14 Points)

In cluster algorithms, the partition function Z = Tr e−βĤ is further expanded in a set of graphs G,
i.e., equal-time slices through world lines, that belong to the same configuration C. Here, a world
line is given by the evolution of an initial configuration C0

|C0⟩
p(C1|C0)−→ |C1⟩

p(C2|C1)−→ · · ·
p(CM |CM−1)−→ |CM⟩ , (3)

with M ∈ N, which constitutes a Markov process. For a certain configuration and compatible graph
(Cn, Gn), it is realized by performing a graph update with probability p(Cn, Gn+1|Gn), followed by
an update of the configuration, compatible with the new graph, with probability p(Cn+1|Cn, Gn+1).

For the Ising model, this process can be obtained by noting that only neighboring spin can be
flipped and there are two possible graphs associated. If under a transition Cn −→ Cn+1 a pair of
spins is to be flipped, we denote the corresponding graph to be connected, otherwise the graph is
called disconnected.

(1.a) (3P) Implement a lattice class which hosts a configuration C of spin-1/2 degrees of freedom
on a two-dimensional lattice with dimensions L×L. Equip the class with a method to compute
the average magnetization m = ⟨Ẑ⟩. Furthermore, implement a method that initializes the
lattice with a random configuration of spin.
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(1.b) (3P) Implement an update class that acts as base class for a cluster update. It should provide
an abstract method that takes as input a configuration C and returns a new configuration
C ′. Extend your lattice class by an update method that takes as input argument an instance
of the update class (updater) as well a number of updates Nu to be performed and which
then calls the updater Nu times to generate a new lattice configuration.

(1.c) (4P) Derive from the basic update class to implement the Swendsen-Wang algorithm. Here,
an update is defined by

– To each neighboring pair of parallel aligned spins in the lattice, assign with probability
1− e−2βJ a label connected or label it as disconnected.

– Find all clusters of connected spins.

– The spins in each cluster are flipped with probability 1/2.

(1.d) (4P) Derive from the basic update class to implement the Wolff algorithm. Here, an update
is defined by

– Choose a random spin as initial cluster.

– Label all neighboring spins that are parallel to the initial spin as connected with
probability 1− e−2βJ .

– Repeat the previous step for all spins that have been newly added to the cluster
recursively, until the cluster is not growing any more.

– Flip all spins in the cluster.

Problem 2 Autocorrelation times (6 Points)

We now test the different cluster update methods by computing the autocorrelation times. These
are crucial to ensure that the configurations generated by one update run can be considered to be
independent, i.e., they constitute independent samples, drawn from the jont probability distribution
p(C). Deviations of the sample independence affect the estimation of expectation values Ā of
observables via the autocorrelation cA(t):

Var[Ā] =
Var[⟨Â⟩]

NC

(
1 + 2

NC−1∑
t=1

(1− t

N
)
cA(t)

cA(0)
)

)
(4)

with NC = |C|. The autocorrelation is defined via

cA(t) = ⟨A0At⟩ − ⟨A⟩2 , (5)

where ⟨A0At⟩ denotes the expectation value w.r.t. to the 0th and tth samples of the NC realizations.

(2.a) (3P) For both update methods implemented, run N = 100 Monte-Carlo simulations at
inverse temperatures β = 0.1, . . . , 10.0 (with a proper discretization for the β’s), choosing
Nu = 100 Markov steps and NC = 50 configurations per simulation. Start each simulation
from a random configuration and use Nu initial updates to erase the memory of the initial state
(burn-in). In every simulation after each cluster update, measure the cluster’s magnetizations
m and store the sequence of NC measurement results.

(2.a) (3P) Compute the autocorrelation cm(t) for both update schemes. Estimate the integrated

autocorrelation time τm =
∑NC−1

t=1 (1− t
N
) cm(t)
cm(0)

) and compare it to the sample variance of
the magnetization.
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