
https://www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_23/nqp/

Sheet 2: Exact Diagonalization

Released: 05/05/23; Submit until: 05/19/23 (20 Points)

On this sheet we will set up a small exact diagonalization code to solve a fundamental problem of quantum mechanics: the one-dimensional transverse-field Ising model. Solving the exercises, we will try to follow the paradigm of test-driven development, which is a standard paradigm when developing complex code. There are many neat tools for various languages. If you are working in Python, you may find it helpful to have a closer look at the Pytest framework, which is already available on ASC cluster (after sourcing init_modules.sh). If your are working in C++, you can use the header file catch.hpp in the folder exact_diagonalization of the exercise-git to set up unit tests (as for instance explained here).

Problem 1 A tensor product Hilbert space (8 Points)

We are considering a chain of $L \in \mathbb{N}$ spins, each of which being described by a two-dimensional degree of freedom $\left|s_{j}\right\rangle \in \mathbb{C}^{2}$ where $j \in\{0, \ldots, L-1\}$ labels the lattice site. The transverse-field Ising model with periodic boundary conditions in one dimension is now defined by the Hamiltonian

$$
\begin{equation*}
\hat{H}=-\sum_{j=0}^{L-1} \hat{\sigma}_{j}^{z} \hat{\sigma}_{j+1}^{z}-h \sum_{j=0}^{L-1} \hat{\sigma}_{j}^{x}, \tag{1}
\end{equation*}
$$

where $h \in \mathbb{R}$ is the transverse magnetic field. Here, the $\hat{\sigma}_{j}^{\alpha}$ are Pauli operators acting on the j th spin of the many-body Hilbert space $\mathcal{H}=\bigotimes_{j=0}^{L-1} \mathbb{C}^{2}$, fulfilling the commutation relations

$$
\begin{equation*}
\left[\hat{\sigma}_{i}^{\alpha}, \hat{\sigma}_{j}^{\beta}\right]=2 \delta_{i j} \epsilon^{\alpha \beta \gamma} \hat{\sigma}_{j}^{\gamma}, \tag{2}
\end{equation*}
$$

where $\alpha, \beta, \gamma \in\{x, y, z\}$ and $\epsilon^{\alpha \beta \gamma}$ is the Levi-Civita symbol.
Implement a class that represents the Hilbert space \mathcal{H} and operators acting on it, for a given number of lattice sites L. It should at least provide the following functionality:

- Generation of a random state, a ferromagnetic state along the z-direction and a ferromagnetic state along the x-direction, represented as vectors $\vec{x} \in \mathbb{C}^{2^{L}}$.
- Generation of operators $\hat{\sigma}_{j}^{\alpha}$ as well as the identity, acting on \mathcal{H}, represented as matrices $\mathbf{M} \in \mathbb{C}^{2^{L} \times 2^{L}}$.
- Action of an operator \hat{O} on a state $|\psi\rangle \in \mathcal{H}$.
- Calculation of the standard scalar product $\langle\cdot \mid \cdot\rangle$ on \mathcal{H}.

For each functionality, write a proper testcase which reasonably validates your implementation.

Problem 2 Determining the ground-state phase diagram(12 Points)
Now that we have set the stage, we can start to study eq. (1), numerically.
(2.a) (3P) Implement a function which generates a matrix representation of \hat{H} as a function of the transverse field. Write at least two testcases, which reasonably validate your implementation.
(2.b) (3P) Calculate the ground-state energy density $e(h)=\langle\hat{H}\rangle / L$ as a function of the transverse field h by determining the ground state energy of \hat{H}. Also, evaluate the average ground-state magnetization as a function of the transverse field

$$
\begin{equation*}
m(h)=\frac{1}{2 L} \sum_{j=0}^{L-1}\left\langle\hat{\sigma}_{j}^{z}\right\rangle . \tag{3}
\end{equation*}
$$

(2.c) (4P) Repeat your calculations for different number of lattice sites and determine the critical field $h_{\mathrm{c}}(L)$ at which the model undergoes a quantum phase transition. Perform a finite-size scaling of $h_{\mathrm{c}}(L)$ to estimate $h_{\mathrm{c}}(L \rightarrow \infty)$, i.e., the critical field in the thermodynamic limit. How does your result compare to the literature?
(2.d) (2P) Show numerically that in the limits $h \rightarrow 0$ and $h \rightarrow \infty$, the ground states $\left|\psi_{0}(h)\right\rangle$ of eq. (1) approach the mean-field solutions

$$
\left|\psi_{0}(h)\right\rangle= \begin{cases}|\uparrow\rangle \otimes|\uparrow\rangle \cdots \text { or }|\downarrow\rangle \otimes|\downarrow\rangle \cdots, & \text { if } h \rightarrow 0 \tag{4}\\ |\rightarrow\rangle \otimes|\rightarrow\rangle \cdots, & \text { if } h \rightarrow \infty\end{cases}
$$

Here, $|\uparrow\rangle,|\downarrow\rangle$ denote the eigenstates of $\hat{\sigma}_{j}^{z}$ at a given lattice site j, and $|\rightarrow\rangle,|\leftarrow\rangle$ the eigenstates of $\hat{\sigma}_{j}^{x}$.

