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On this sheet we will set up a small exact diagonalization code to solve a fundamental problem of
quantum mechanics: the one-dimensional transverse-field Ising model. Solving the exercises, we
will try to follow the paradigm of test-driven development, which is a standard paradigm when
developing complex code. There are many neat tools for various languages. If you are working in
Python, you may find it helpful to have a closer look at the Pytest framework, which is already
available on ASC cluster (after sourcing init modules.sh). If your are working in C++, you can
use the header file catch.hpp in the folder exact diagonalization of the exercise-git to set up
unit tests (as for instance explained here).

Problem 1 A tensor product Hilbert space (8 Points)

We are considering a chain of L ∈ N spins, each of which being described by a two-dimensional
degree of freedom |sj⟩ ∈ C2 where j ∈ {0, . . . , L− 1} labels the lattice site. The transverse-field
Ising model with periodic boundary conditions in one dimension is now defined by the Hamiltonian

Ĥ = −
L−1∑
j=0

σ̂z
j σ̂

z
j+1 − h

L−1∑
j=0

σ̂x
j , (1)

where h ∈ R is the transverse magnetic field. Here, the σ̂α
j are Pauli operators acting on the jth

spin of the many-body Hilbert space H =
⊗L−1

j=0 C2, fulfilling the commutation relations[
σ̂α
i , σ̂

β
j

]
= 2δijϵ

αβγσ̂γ
j , (2)

where α, β, γ ∈ {x, y, z} and ϵαβγ is the Levi-Civita symbol.
Implement a class that represents the Hilbert space H and operators acting on it, for a given

number of lattice sites L. It should at least provide the following functionality:

• Generation of a random state, a ferromagnetic state along the z-direction and a ferromagnetic
state along the x-direction, represented as vectors x⃗ ∈ C2L .

• Generation of operators σ̂α
j as well as the identity, acting on H, represented as matrices

M ∈ C2L×2L .

• Action of an operator Ô on a state |ψ⟩ ∈ H.

• Calculation of the standard scalar product ⟨·|·⟩ on H.

For each functionality, write a proper testcase which reasonably validates your implementation.
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Problem 2 Determining the ground-state phase diagram(12 Points)

Now that we have set the stage, we can start to study eq. (1), numerically.

(2.a) (3P) Implement a function which generates a matrix representation of Ĥ as a function of the
transverse field. Write at least two testcases, which reasonably validate your implementation.

(2.b) (3P) Calculate the ground-state energy density e(h) = ⟨Ĥ⟩ /L as a function of the transverse
field h by determining the ground state energy of Ĥ. Also, evaluate the average ground-state
magnetization as a function of the transverse field

m(h) =
1

2L

L−1∑
j=0

⟨σ̂z
j ⟩ . (3)

(2.c) (4P) Repeat your calculations for different number of lattice sites and determine the critical
field hc(L) at which the model undergoes a quantum phase transition. Perform a finite-size
scaling of hc(L) to estimate hc(L→∞), i.e., the critical field in the thermodynamic limit.
How does your result compare to the literature?

(2.d) (2P) Show numerically that in the limits h → 0 and h → ∞, the ground states |ψ0(h)⟩
of eq. (1) approach the mean-field solutions

|ψ0(h)⟩ =

{
|↑⟩ ⊗ |↑⟩ · · · or |↓⟩ ⊗ |↓⟩ · · · , if h→ 0,

|→⟩ ⊗ |→⟩ · · · , if h→∞.
(4)

Here, |↑⟩ , |↓⟩ denote the eigenstates of σ̂z
j at a given lattice site j, and |→⟩ , |←⟩ the

eigenstates of σ̂x
j .

2


	A tensor product Hilbert space (8 Points)
	Determining the ground-state phase diagram(12 Points)

