FacurLry oF PHYsICS, SUMMER TERM 2023

LUDWIG- NUMERICAL QUANTUM PHYSICS
MAXIMILIANS- .
LMU UNIVERSITAT LECTURER: DR. S. PAECKEL
MUNCHEN ASSISTANT LECTURER: Z. XIE, B. SCHNEIDER

https://www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_23/nqp/

Sheet 1: Linear Algebra
Released: 04/21/23; Submit until: 05/05/23 (20 Points)

This sheet is about a very small introduction into elementary concepts of C++ and how to use them
to implement fast linear algebra operations using Intel's Math Kernel Library (MKL). In order to
work through the problems, checkout the git repository nqp-exercises provided on the lecture's
homepage and work with the code templates. While the header file 1a_wrapper.h, which contains
an interface to some linear algebra methods of the MKL, is complete, in each code template there
are files which are erroneous and need to be corrected. In a Jupyter-Hub) session, use the provided
Makefile as well as a proper make.inc to compile the corrected code templates.

Problem 1 Implementing a matrix class (5 Points)

Checkout the code template blas_wrapper, which contains an elementary implementation of a
wrapper of the widely used linear algebra MKL.

(1.a) (3P) Correct the code template blas_wrapper such that you can compile it using make
build. As a consistency check, you can use the default implementation of the main-routine
and check the output when executing the compiled binary.

(1.b) (2P) You now have a rudimentary matrix class that implements fast linear algebra operations
using Intel's MKL. Use this class and write a main-routine which performs a scaling analysis
of the runtime needed to copy matrices with dimension m x m for m € N and plot the
runtime as a function of m. Extract the exponent o determining the dominating scaling of
the runtime ¢t ~ m®.

Problem 2 Implementing fast matrix contractions (10 Points)

For this exercise, checkout the code template gemm wrapper, which provides an elementary
implementation of the fast xgemm operations. Here, the x denotes the fundamental data type, i.e.,
single, double, complex single, or complex double. The acronym gemm abbreviates GEneral
Matrix-Matrix multiplications and this convention carries over for other provided operations, for
instance, GEneral Matrix-Vector multiplications (checkout Intel's developer guide for a rather
complete documentation about the blas/lapack interface).

(2.a) (5P) Proceed as in problem (1) and correct the code template. Note how la_operations.h
now also contains a multiplication operations, which is compiled into an object file 1la_-
objects.o that now implements a general matrix-matrix multiplication. Write a test case,
which tests the implemented xgemm-functionality and returns success (return code 0) or
failure (return code 1) on exit, depending on whether a successful matrix-matrix multiplication
has been performed. Why is such a test case useful?


https://www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_23/nqp/
git@gitlab.physik.uni-muenchen.de:nqp/nqp-exercises.git
https://www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_23/nqp/uebungen/index.html
https://jupyter.physik.uni-muenchen.de
https://www.intel.com/content/www/us/en/docs/onemkl/developer-guide-linux/2023-1/overview.html

(2.b) (5P) Write a trivial version of a matrix-matrix multiplication by implementing the calculations
of the elements
Cij = ) AuB (1)
k

of the result of a matrix-matrix product C = A - B, explicitly. Here, we consider A, B, C €
VEX™ for some m € N. Perform a runtime analysis comparing your naive implementation
with xgemm calls, investigate the dependency of the runtime on the matrix dimension m and
extract the exponent /3 determining the dominating scaling of the runtime ¢ ~ m”. Interpret
you result.

Problem 3 Syntactic sugar for matrix contractions (5 Points)

For this exercise, checkout the code template expr_templates, which provides an elementary
implementation of expression templates to overload the multiplication operator. In problem (2) we
introduced an operator overload to the multiplication operator *, allowing for expression such as
C=Ax*B in C++. However, that implementation also required an intermediate copy operation, which
is necessary because * is a binary operator and the result of the matrix-matrix multiplication has to
get through a temporary return value. This unfortunate fact can be avoided by delayed evaluation,
which in C++ can be implemented using expression templates.

(3.a) (3P) Proceed as in problem (1) and (2) and correct the code template. In particular note
how the binary matrix-matrix multiplication operator * is mapped to the unary assignment
operator =, which assigns the result of the operation to an instance of LAMatrix without
additional copy-operations.

(3.b) (2P) Perform a runtime analysis and extract the speed-up as a function of the matrix-
dimension m obtained, using the xgemm-impementations of the *-operator from problem (2)
and (3).



	Implementing a matrix class (5 Points)
	Implementing fast matrix contractions (10 Points)
	Syntactic sugar for matrix contractions (5 Points)

