
Faculty of Physics, Summer Term 2023

Numerical Quantum Physics

Lecturer: Dr. S. Paeckel

Assistant Lecturer: Z. Xie, B. Schneider

https://www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_23/nqp/

Sheet 1: Linear Algebra

Released: 04/21/23; Submit until: 05/05/23 (20 Points)

This sheet is about a very small introduction into elementary concepts of C++ and how to use them
to implement fast linear algebra operations using Intel’s Math Kernel Library (MKL). In order to
work through the problems, checkout the git repository nqp-exercises provided on the lecture’s
homepage and work with the code templates. While the header file la wrapper.h, which contains
an interface to some linear algebra methods of the MKL, is complete, in each code template there
are files which are erroneous and need to be corrected. In a Jupyter-Hub session, use the provided
Makefile as well as a proper make.inc to compile the corrected code templates.

Problem 1 Implementing a matrix class (5 Points)

Checkout the code template blas wrapper, which contains an elementary implementation of a
wrapper of the widely used linear algebra MKL.

(1.a) (3P) Correct the code template blas wrapper such that you can compile it using make

build. As a consistency check, you can use the default implementation of the main-routine
and check the output when executing the compiled binary.

(1.b) (2P) You now have a rudimentary matrix class that implements fast linear algebra operations
using Intel’s MKL. Use this class and write a main-routine which performs a scaling analysis
of the runtime needed to copy matrices with dimension m × m for m ∈ N and plot the
runtime as a function of m. Extract the exponent α determining the dominating scaling of
the runtime t ∼ mα.

Problem 2 Implementing fast matrix contractions (10 Points)

For this exercise, checkout the code template gemm wrapper, which provides an elementary
implementation of the fast xgemm operations. Here, the x denotes the fundamental data type, i.e.,
single, double, complex single, or complex double. The acronym gemm abbreviates GEneral
Matrix-Matrix multiplications and this convention carries over for other provided operations, for
instance, GEneral Matrix-Vector multiplications (checkout Intel’s developer guide for a rather
complete documentation about the blas/lapack interface).

(2.a) (5P) Proceed as in problem (1) and correct the code template. Note how la operations.h

now also contains a multiplication operations, which is compiled into an object file la -

objects.o that now implements a general matrix-matrix multiplication. Write a test case,
which tests the implemented xgemm-functionality and returns success (return code 0) or
failure (return code 1) on exit, depending on whether a successful matrix-matrix multiplication
has been performed. Why is such a test case useful?

1

https://www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_23/nqp/
git@gitlab.physik.uni-muenchen.de:nqp/nqp-exercises.git
https://www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_23/nqp/uebungen/index.html
https://jupyter.physik.uni-muenchen.de
https://www.intel.com/content/www/us/en/docs/onemkl/developer-guide-linux/2023-1/overview.html


(2.b) (5P) Write a trivial version of a matrix-matrix multiplication by implementing the calculations
of the elements

Cij =
∑
k

AikBkj (1)

of the result of a matrix-matrix product C = A ·B, explicitly. Here, we consider A,B,C ∈
Vm×m

R for some m ∈ N. Perform a runtime analysis comparing your naive implementation
with xgemm calls, investigate the dependency of the runtime on the matrix dimension m and
extract the exponent β determining the dominating scaling of the runtime t ∼ mβ. Interpret
you result.

Problem 3 Syntactic sugar for matrix contractions (5 Points)

For this exercise, checkout the code template expr templates, which provides an elementary
implementation of expression templates to overload the multiplication operator. In problem (2) we
introduced an operator overload to the multiplication operator *, allowing for expression such as
C=A*B in C++. However, that implementation also required an intermediate copy operation, which
is necessary because * is a binary operator and the result of the matrix-matrix multiplication has to
get through a temporary return value. This unfortunate fact can be avoided by delayed evaluation,
which in C++ can be implemented using expression templates.

(3.a) (3P) Proceed as in problem (1) and (2) and correct the code template. In particular note
how the binary matrix-matrix multiplication operator * is mapped to the unary assignment
operator =, which assigns the result of the operation to an instance of LAMatrix without
additional copy-operations.

(3.b) (2P) Perform a runtime analysis and extract the speed-up as a function of the matrix-
dimension m obtained, using the xgemm-impementations of the *-operator from problem (2)
and (3).

2


	Implementing a matrix class (5 Points)
	Implementing fast matrix contractions (10 Points)
	Syntactic sugar for matrix contractions (5 Points)

