
Large Scale Numerics

Programming languages for HPC
&

Basic concepts of C++

Foundations Programming Langauges

Large Scale Numerics
Programming languages for HPC

Benchmark of 27 programming languages using
computer benchmark language game

Foundations Programming Langauges

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html

Large Scale Numerics

Programming languages for HPC

From a developer perspective
Classify according to type checking

statically $ dynamically typed
int i = 3 $ i = 3
weakly $ strongly typed
int i = 3; string s = "a"; print i+s
dynamic conversion possible if weakly typed

Static type checking
Protection from runtime errors
No runtime type deduction ! faster computation
Example: Precomputed result-types in tensor calculus

Dynamic type checking requires RunTime Type
Information (RTTI)

No compilation step, type deduction at runtime
Dynamic dispatchment, late binding, ...

staticdynamic

strong

weak

C

C++

PHP
VB

JavaScript

Python

Julia Java

FORTRAN

Name

Object Type

Type

define define

is of
must match

define

is of

Stack/Memory view:

00 00 00 01

00 03 FF FF · · · Value?

Address of i

Value

Foundations Programming Langauges

Large Scale Numerics

Programming languages for HPC

From a developer perspective
Classify according to type checking

statically $ dynamically typed
int i = 3 $ i = 3
weakly $ strongly typed
int i = 3; string s = "a"; print i+s
dynamic conversion possible if weakly typed

Static type checking
Protection from runtime errors
No runtime type deduction ! faster computation
Example: Precomputed result-types in tensor calculus

Dynamic type checking requires RunTime Type
Information (RTTI)

No compilation step, type deduction at runtime
Dynamic dispatchment, late binding, ...

staticdynamic

strong

weak

C

C++

PHP
VB

JavaScript

Python

Julia Java

FORTRAN

Name

Object Type

Type

define define

is of
must match

define

is of

Stack/Memory view:

00 00 00 01

00 03 FF FF · · · Value?

Address of i

Value

Foundations Programming Langauges

Large Scale Numerics

Programming languages for HPC

From a developer perspective
Classify according to type checking

statically $ dynamically typed
int i = 3 $ i = 3
weakly $ strongly typed
int i = 3; string s = "a"; print i+s
dynamic conversion possible if weakly typed

Static type checking
Protection from runtime errors
No runtime type deduction ! faster computation
Example: Precomputed result-types in tensor calculus

Dynamic type checking requires RunTime Type
Information (RTTI)

No compilation step, type deduction at runtime
Dynamic dispatchment, late binding, ...

staticdynamic

strong

weak

C

C++

PHP
VB

JavaScript

Python

Julia Java

FORTRAN

Name

Object Type

Type

define define

is of
must match

define

is of

Stack/Memory view:

00 00 00 01

00 03 FF FF · · · Value?

Address of i

Value

Foundations Programming Langauges

Large Scale Numerics
Programming languages for HPC

Which language to learn? Let’s formulate some criteria:
General purpose language (no domain specific langauge)
Need to produce highly efficient and portable programs
Large software/library ecosystem
Large supportive community maintaining language (so that it’s unlikely it may vanish in the
near future)
Good starting point to learn further languages

Python or C++ are ideal candidates
C++ ! Python easier than Python ! C++

) Let’s begin with C++!

Examples: /project/cip/2023-SS-NQP/shared/example/cpp/lecture
Foundations Programming Langauges

Large Scale Numerics
Programming languages for HPC

Which language to learn? Let’s formulate some criteria:
General purpose language (no domain specific langauge)
Need to produce highly efficient and portable programs
Large software/library ecosystem
Large supportive community maintaining language (so that it’s unlikely it may vanish in the
near future)
Good starting point to learn further languages

Python or C++ are ideal candidates
C++ ! Python easier than Python ! C++

) Let’s begin with C++!

Examples: /project/cip/2023-SS-NQP/shared/example/cpp/lecture
Foundations Programming Langauges

Large Scale Numerics

C++: Basic concepts

Fundamental types
void/nullptr_t: no valid type/invalid pointer type
bool: 1 Bit representing boolean True/False
char et al.: ASCII characters (or more for unicode support: wchar_t, char16_t, ...)
signed/unsigned int et al.: Integer number with different ranges (short, int,
long, long long), signed is default
float et al.: Floating point number with single (float, 32 Bit), double (double, 64
Bit) or extended (long double, 80 Bit) precision

Pointers/References
For each type T there is a pointer type T* (can be nullptr)
For each type T there is a reference type T& (must point to valid memory)
For each type T there is a rvalue type T&& (only represents intermediate values or literals)

Foundations Programming Langauges

Large Scale Numerics

C++: Basic concepts

Fundamental types
void/nullptr_t: no valid type/invalid pointer type
bool: 1 Bit representing boolean True/False
char et al.: ASCII characters (or more for unicode support: wchar_t, char16_t, ...)
signed/unsigned int et al.: Integer number with different ranges (short, int,
long, long long), signed is default
float et al.: Floating point number with single (float, 32 Bit), double (double, 64
Bit) or extended (long double, 80 Bit) precision

Pointers/References
For each type T there is a pointer type T* (can be nullptr)
For each type T there is a reference type T& (must point to valid memory)
For each type T there is a rvalue type T&& (only represents intermediate values or literals)

Foundations Programming Langauges

Large Scale Numerics

C++: Basic concepts

The holy trinity of Const’ness:

/ / v a l u e o f i may change l a t e r
i n t i = 3 ;

/ / p i s a c o n s t a n t p o i n t e r t o an i n t e g e r , t h e memory b l o c k p p o i n t s t o can ’ t be
changed v i a p

c o n s t i n t * p = &i ;

/ / p i s a c o n s t a n t p o i n t e r t o a non − c o n s t a n t i n t e g e r , t h e memory b l o c k p p o i n t s t o
can be changed v i a p

i n t * c o n s t p = &i ;

/ / p i s a c o n s t a n t p o i n t e r t o a c o n s t a n t memory block , n e i t h e r p can be changed ,
nor t h e memory b l o c k v i a p

c o n s t i n t * c o n s t p = &i ;

Note: Read const-definitions from right to left!

Foundations Programming Langauges

Large Scale Numerics

C++: Basic concepts
Operators: Unary, Binary and Ternary

Unary, for instance
Arithmetic operation: +=, -=, *=, /=, ++, --
Logical operations: !, !=
Bitwise operations: ⇠, ⇠=

Binary, for instance
Arithmetic operation: +, -, *, /, %
Logical operations: &, |
Bitwise operations: &, |, ˆ
Stream operations: «, »

Ternary:
<condition>?<expr1>:<expr2>

Execute expr1 if condition evaluates to
True
Execute expr2 if condition evaluates to
False

/ / i n t i s s i g n e d 32 b i t i n t e g e r !
/ / i n t i =0 t h e n means i =0x0000FFFF
i n t i =0 , j ; j =(++ i) ; / / now j =1
i n t i =0 , j ; j ~= i ; / / now j = −65536

i n t i =10 , j ; j = i %3; / / now j =1
i n t i =7 , j ; j = i &2; / / now j =2

i n t i =1 , j ;
j =(i >0) ? 1 : (i <0) ? −1: 0 ; / / imp lemen t s

sgn ()

Foundations Programming Langauges

Large Scale Numerics

C++: Basic concepts
Functions and Routines

General syntax of routines:
Return type or void
Routine identifier
Routine parameter

main function:

i n t main (i n t a rgc , c h a r ** a rgv []) ;

Must return int

Must take one int parameter and one pointer to char-array

i n c l u d e < i o s t r e a m >

i n t a r i t h m e t i c _ s u m (c o n s t i n t& _l , c o n s t i n t& _u) {
i n t r e s u l t = 0 ;
f o r (i n t i = _ l ; i <= _u ; i ++) { r e s u l t += i ; }
r e t u r n r e s u l t ;

}

vo id o u t p u t _ a r i t h m e t i c _ s e q u e n c e (c o n s t i n t& _l , c o n s t i n t& _u) {
s t d : : c o u t << " sum " << _ l << " t o " << _u << " : " << a r i t h m e t i c _ s u m (_l , _u) << s t d : : e n d l ;

}

Foundations Programming Langauges

Large Scale Numerics

C++: Basic concepts

Flexible, static typing: Templates
function templates provide automatic specializations of functions acting on different
types T

i n c l u d e < i o s t r e a m >

t e m p l a t e < typename T>
vo id p r i n t _ s u m (c o n s t T& _ l h s , c o n s t T& _ r h s) {

s t d : : c o u t << _ l h s << "+" << _ r h s << "=" << (_ l h s + _ r h s) << s t d : : e n d l ;
}

class templates provide automatic specializations of different class types

t e m p l a t e < typename T>
s t r u c t Complex { T r e a l ; T imag ; } ;

Foundations Programming Langauges

Large Scale Numerics
C++: Basic concepts

Template specializations allow for compact type-dependent declarations

t e m p l a t e < typename T> s t r u c t Complex ; / / f o r w a r d d e c l a r a t i o n
t e m p l a t e < typename T> s t r u c t TypeIn fo { t y p e d e f T BaseType ; } ;
t e m p l a t e <> s t r u c t TypeInfo <Complex < f l o a t >> { t y p e d e f f l o a t BaseType ; } ;
t e m p l a t e <> s t r u c t TypeInfo <Complex < double >> { t y p e d e f d oub l e BaseType ; } ;

Now we can define generalized norm function

i n c l u d e <cmath >

t e m p l a t e < typename T>
typename TypeInfo <Complex <T> >: : BaseType norm (c o n s t Complex <T>& _ v a l u e) {

r e t u r n s t d : : s q r t ((_ v a l u e . r e a l * _ v a l u e . r e a l) +(_ v a l u e . imag * _ v a l u e . imag)) ;
}

This can be generalized even further introducing a function template

t e m p l a t e < typename X>
typename TypeInfo <X> : : BaseType norm (c o n s t X& _ v a l u e) ;

Foundations Programming Langauges

Large Scale Numerics
C++: Basic concepts

Operator overloading for convenient arithmetics
Unary operators:

t e m p l a t e < typename T>
s t r u c t Complex {

T r e a l ;
T imag ;
Complex <T>& o p e r a t o r +=(c o n s t Complex <T>& _ r h s) {

t h i s −> r e a l += _ r h s . r e a l ; t h i s −>imag += _ r h s . imag ;
r e t u r n * t h i s ;

} / / imp lemen t s z1 += z2 ; f o r Complex <T> z1 , z2 ;
}

Binary operators:
t e m p l a t e < typename T>
Complex <T> o p e r a t o r +(c o n s t Complex <T>& _lhs , c o n s t Complex <T>& _ r h s) {

Complex <T> r e s u l t (_ l h s) ; r e s u l t += _ r h s ;
r e t u r n r e s u l t ;

} / / imp lemen t s z3 = z1 + z2 ; f o r Complex <T> z1 , z2 , z3 ;

Foundations Programming Langauges

Large Scale Numerics

C++: Basic concepts

The auto keyword: Automatic type deduction
Quite often the type of a variable can be inered from the interpreter, e.eg.:

In case of literals: i = 10, i = 1.0
In case of return types of functions: z = foo()

a u t o i = 1u ; / / d e f i n e s i a s u n s i g n e d i n t
a u t o j = −2; / / d e f i n e s j a s s i g n e d i n t
a u t o f = 1 . 0 / j ; / / d e f i n e s f a s d o u b l e

This is very helpful since in particular templates can render types rather confusing
Also simplifies loops via ranged based accessors:

s t d : : v e c t o r <T> l i s t (1 0) ; / / a 10− e l e m e n t v e c t o r o f d o u b l e s
f o r (a u t o& e l : l i s t) {

e l = 2 . 0 ; / / e l i s a r e f e r e n c e so we f i l l v e c t o r w i th 2 . 0
}

Foundations Programming Langauges

Large Scale Numerics

C++: Basic concepts
Lambda expressions for in-place functor definitions

In some situations objects representing functions (functors) are necessary
Lambda expressions allow for compact definition of functors

a u t o cmp = [] (c o n s t Complex <T> _ lhs , c o n s t Complex <T>& _ r h s) −> boo l {
r e t u r n norm (_ l h s) < norm (_ r h s) ;

} ;

Functor cmp implements binary operator performing weak comparison and can be passed
as argument to other functions

i n c l u d e < a l g o r i t h m >

t e m p l a t e < typename T>
vo id w e a k _ s o r t (s t d : : v e c t o r <Complex <T>>& _ l i s t) {

s t d : : s o r t (_ l i s t . b e g i n () , _ l i s t . end () , cmp) ;
} ;

Foundations Programming Langauges

Large Scale Numerics

C++: File types and compilation
How do we convert source code into actual pro-
grams?

Source code files
Source files with file ending *.cpp provide the
implementation of our programm
Declarations can be outsourced into header files
with file endings *.h or *.hh

Object files with file endings *.o or *.obj
contain compiled implementations in binary
form
Shared libraries files with file endings *.so or
*.a are a collection of compiled objects (library)
Binary executables (typically no file-ending or
*.exe) are programs that can be run by the
operating system

main.cpp main.h

main.o

main libgcc.a,. . .

Preprocessor

Compiler

Linker

Linker

Foundations Programming Langauges

Large Scale Numerics

C++: File types and compilation
How do we convert source code into actual pro-
grams?

Source code files
Source files with file ending *.cpp provide the
implementation of our programm
Declarations can be outsourced into header files
with file endings *.h or *.hh

Object files with file endings *.o or *.obj
contain compiled implementations in binary
form

Shared libraries files with file endings *.so or
*.a are a collection of compiled objects (library)
Binary executables (typically no file-ending or
*.exe) are programs that can be run by the
operating system

main.cpp main.h

main.o

main libgcc.a,. . .

Preprocessor

Compiler

Linker

Linker

Foundations Programming Langauges

Large Scale Numerics

C++: File types and compilation
How do we convert source code into actual pro-
grams?

Source code files
Source files with file ending *.cpp provide the
implementation of our programm
Declarations can be outsourced into header files
with file endings *.h or *.hh

Object files with file endings *.o or *.obj
contain compiled implementations in binary
form
Shared libraries files with file endings *.so or
*.a are a collection of compiled objects (library)

Binary executables (typically no file-ending or
*.exe) are programs that can be run by the
operating system

main.cpp main.h

main.o

main libgcc.a,. . .

Preprocessor

Compiler

Linker

Linker

Foundations Programming Langauges

Large Scale Numerics

C++: File types and compilation
How do we convert source code into actual pro-
grams?

Source code files
Source files with file ending *.cpp provide the
implementation of our programm
Declarations can be outsourced into header files
with file endings *.h or *.hh

Object files with file endings *.o or *.obj
contain compiled implementations in binary
form
Shared libraries files with file endings *.so or
*.a are a collection of compiled objects (library)
Binary executables (typically no file-ending or
*.exe) are programs that can be run by the
operating system

main.cpp main.h

main.o

main libgcc.a,. . .

Preprocessor

Compiler

Linker

Linker

Foundations Programming Langauges

Large Scale Numerics

C++: File types and compilation

Preprocessor: Replace #include <*> statements with actual file contents
Compiler: Create *.o file from preprocessed source file
Both typically provided by compiler g++ and executed in single call specifying -c option

Foundations Programming Langauges

Large Scale Numerics

C++: File types and compilation

Preprocessor: Replace #include <*> statements with actual file contents
Compiler: Create *.o file from preprocessed source file
Both typically provided by compiler g++ and executed in single call specifying -c option

Linker: Link external libraries and object file into binary executable
Typically provided by compiler g++ and executed specifying -o option

Use -I option to add directories to search path
Use -W option to add directories to configure shown compiler warnings
Use -g, -O, ... options to configure compiler optimization

Foundations Programming Langauges

Large Scale Numerics

C++: Project structure

Preprocessor expands all #include directives
recursively ! large projects then generate large
compiled code files
Implemented functionality is often used in
different contexts, independently

As a consequence, structure project by functionality

Avoid too many nested #include statements
Implement independent functionalities in
independent *.cpp files with associated
headers *.h (always pairwise)
Executables (main-functions) should only serve
as user front end

engine.h
engine.cpp

material.h
material.cpp

chassis.h
chassis.cpp

car.h
car.cpp

color.h
color.cpp

main.cpp

engine.o

material.o

chassis.o

car.o

main.o

color.o

main

Foundations Programming Langauges

Large Scale Numerics

C++: Project structure

Preprocessor expands all #include directives
recursively ! large projects then generate large
compiled code files
Implemented functionality is often used in
different contexts, independently

As a consequence, structure project by functionality
Avoid too many nested #include statements
Implement independent functionalities in
independent *.cpp files with associated
headers *.h (always pairwise)
Executables (main-functions) should only serve
as user front end

engine.h
engine.cpp

material.h
material.cpp

chassis.h
chassis.cpp

car.h
car.cpp

color.h
color.cpp

main.cpp

engine.o

material.o

chassis.o

car.o

main.o

color.o

main

Foundations Programming Langauges

Large Scale Numerics

C++: Project structure

Preprocessor expands all #include directives
recursively ! large projects then generate large
compiled code files
Implemented functionality is often used in
different contexts, independently

As a consequence, structure project by functionality
Avoid too many nested #include statements
Implement independent functionalities in
independent *.cpp files with associated
headers *.h (always pairwise)
Executables (main-functions) should only serve
as user front end

engine.h
engine.cpp

material.h
material.cpp

chassis.h
chassis.cpp

car.h
car.cpp

color.h
color.cpp

main.cpp

engine.o

material.o

chassis.o

car.o

main.o

color.o

main

Foundations Programming Langauges

Large Scale Numerics
C++: Compiling complex programs using make

Make is a tool that executes
(file-)operations based on dependencies
Make establishes rules for targets (files that
should be build) that need to fulfill certain
dependencies
If dependencies are missing or outdated,
Make searches for rules to build them
Compilation and linking chains are handled
automatically

General syntax for a rule:
target: <dependency1> <dependency2> ...

shell command that builds target from
dependencies

define compiler variable
CC = /usr/bin/g++

define compiler flags
CPPFLAGS = -Wall -Wextra -Wpedantic -g3 -O0

define depending objects
OBJS = color.o material.o engine.o chassis.o car.o

define linker flags
LDFLAGS =

include external definitions
include make.inc

define rule for binary
main: main.o $(OBJS$

$(CC) $(CPPFLAGS) $^ -o $@ $(LDFLAGS)

define rule for object files
%.o: %.cpp

$(CC) $(CPPFLAGS) -c $^ -o $@

Foundations Programming Langauges

Large Scale Numerics

Object-Oriented Programming (OOP): Structuring complex code in C++

Relationships between data structures:
Inclusive: Inheritance
Dependent: Attributes of certain types

OOP: Organize code around contained
data, not functionality

Derived classes extend/specialize data
Car: Inherit from chassis

Engine-type: Otto, Diesel
Material-type: Steel, aluminum, carbon

Plane: Inherit from chassis
Engine-type: Diesel, Jet
Material-type: Aluminum, carbon

engine

OttoDiesel Jet

material

aluminumsteel carbon

color

chassis

depends

depends

depends

Parent:

Parent:

Child:

Child:

derive

derive

Foundations Programming Langauges

Large Scale Numerics

Object-Oriented Programming (OOP): Structuring complex code in C++

Relationships between data structures:
Inclusive: Inheritance
Dependent: Attributes of certain types

OOP: Organize code around contained
data, not functionality
Derived classes extend/specialize data

Car: Inherit from chassis
Engine-type: Otto, Diesel
Material-type: Steel, aluminum, carbon

Plane: Inherit from chassis
Engine-type: Diesel, Jet
Material-type: Aluminum, carbon

engine

OttoDiesel Jet

material

aluminumsteel carbon

color

chassis

depends

depends

depends

Parent:

Parent:

Child:

Child:

derive

derive

Foundations Programming Langauges

Large Scale Numerics

Object-Oriented Programming (OOP): Structuring complex code in C++

Relationships between data structures:
Inclusive: Inheritance
Dependent: Attributes of certain types

OOP: Organize code around contained
data, not functionality
Derived classes extend/specialize data
Car: Inherit from chassis

Engine-type: Otto, Diesel
Material-type: Steel, aluminum, carbon

Plane: Inherit from chassis
Engine-type: Diesel, Jet
Material-type: Aluminum, carbon

engine

OttoDiesel Jet

material

aluminumsteel carbon

color

chassis

depends

depends

depends

Parent:

Parent:

Child:

Child:

derive

derive

Foundations Programming Langauges

Large Scale Numerics
OOP in C++

c l a s s Engine {
p r i v a t e : / / n o t v i s i b l e i n d e r i v e d c l a s s e s , n o t a c c e s s i b l e from i n s t a n c e

u n s i g n e d i n t s e r i a l _ i d ;

p r o t e c t e d : / / v i s i b l e i n d e r i v e d c l a s s e s , n o t a c c e s s i b l e from i n s t a n c e
s t d : : s t r i n g f u e l ;

p u b l i c : / / v i s i b l e i n d e r i v e d c l a s s e s , a c c e s s i b l e from i n s t a n c e
u n s i g n e d i n t n e x t _ m a i n t e n a n c e ;

Engine (c o n s t u n s i g n e d i n t& _ s e r i a l _ i d) / / c o n s t r u t o r
: s e r i a l _ i d (_ s e r i a l _ i d) { } ; / / i n i t d e f a u l t v a l u e s

c o n s t s t d : : s t r i n g& g e t _ f u e l () c o n s t { r e t u r n t h i s −> f u e l ; }
} ;

c l a s s D i e s e l : p u b l i c Engine { / / m a i n t a i n v i s i b i l i t y o f p a r e n t c l a s s a t t r i b u t e s
p u b l i c :

D i e s e l (c o n s t u n s i g n e d i n t& _ s e r i a l _ i d) / / o v e r r i d e c o n s t r u c t o r
: Engine (_ s e r i a l _ i d) { t h i s −> f u e l = " D i e s e l " ; t h i s −> n e x t _ m a i n t e n a n c e = 2*365 } ;

} ;
Foundations Programming Langauges

