Problem set : Operator identities useful for Bosonization

1. Baker-Hausdorff: Define $[A, B]_{n+1}=\left[[A, B]_{n}, B\right]$, and $[A, B]_{0}=A$.

Show $\quad e^{-B} A e^{B}=\sum_{n=0}^{\infty} \frac{1}{n!}[A, B]_{n}$

$$
\begin{equation*}
(s \in \mathbb{R}) \tag{1}
\end{equation*}
$$

Hint: Expand the function $A(s)=e^{-S B} A e^{s B}$ as a Taylor series in s, and evaluate this series at $s=1$.
2. Suppose $C=[A, B]$ satisfies $[A, C]=[B, C]=0$. Show that

2(i) $e^{-B} A e^{8}=A+C$
2. (iii) $e^{A} e^{B}=e^{A+B} e^{C / 2}$
2.(ii) $e^{-B} f(A) e^{B}=f(A+C)$
2. (iv) $e^{A} e^{B}=e^{B} e^{A} e^{C}$

Hints: (i) Baker-Hanesdorff
(ii) Taylor-expand $f(A)$, find u-th term by miduction, starting from $2(i)$.
(iii) Define $T(s)=e^{s A} e^{s B} \quad(s \in \mathbb{R})$, calculate $\frac{d T(s)}{d s}=$? , and show that the solution of this differ equation is $T(s)=e^{s(A+B)} e^{s^{2} c / 2}$
3. Suppose $[A, B]=D B$ and $[A, D]=[B, D]=0$

3(i) Show that $f(A) B=B f(A+D)$
Hint: Taylor-expand, induction!

Use 3(i) to show that
3.(ii) $\quad e^{A} B=B e^{A+D}$
3.(iii) $\quad e^{A} B^{n}=\left(B e^{D}\right)^{n} e^{A}$

Hint: 3(ii), induction!
3.(iv) $\quad e^{A} e^{B}=e^{\left(B e^{D}\right)} e^{A}$ Hint: expand e^{B}, use $3(i i)$.
4. Prove the identities:
(i) $\psi_{\eta}(x) f\left(\left\{b_{q \eta}^{+}\right\}\right)=f\left(\left\{b_{q \eta}^{+}-\delta_{\eta \eta}^{\prime} \alpha_{q}^{*}(x)\right\}\right) \psi_{s}(x)$

Hint: use $3(i)$, with $A=b_{q \eta}^{+}-\delta_{\eta \eta^{\prime}} \alpha_{q}^{*}(x), \quad B=\psi_{q}(x)$
(ii) $f\left(\left\{b_{q \eta}^{+}-\delta_{\eta \eta} \alpha_{q}^{*}(x)\right\}\right)=e^{-i \varphi_{\eta}(x)} f\left(\left\{b_{q \eta}^{+}\right\}\right) e^{i \varphi_{\eta}(x)}$

Hint; use 2(iii), with $A=b_{q \eta}^{+}, B=i \varphi_{\eta}(x)$.
5. Check that the bosonigation identity,

$$
\psi_{\eta}(x)=F \hat{\lambda}_{\eta}(x) e^{-i \varphi_{\eta}^{+}(x)} e^{-i \varphi_{\eta}(x)}
$$

reproduces the anti-coum. relations $\left\{\psi_{\eta}(x), \psi_{\eta}\left(x^{\prime}\right)\right\}=0$

$$
\left\{\psi_{\eta}(x), \quad \stackrel{+}{\psi_{\eta}}\left(x^{\prime}\right)\right\}=\delta_{\eta} y^{\prime} 2 \pi \delta\left(x-x^{\prime}\right)
$$

6. Operator Product Expansion

Show that $\psi_{\eta}^{\dagger}(z+a) \psi_{\eta}(z) \xrightarrow{a \rightarrow 0} \frac{1}{a}+i \partial_{z} \phi_{s}(z)+O\left(\frac{1}{L}\right)$ where $z=\tau+i x$. Hint: fist nomual order, then twee $a \rightarrow 0$.

6(i) use fercrionic representation of ψ
G(ii) " bosonic

Original fermion field
(with finite bandwidth for k,
ie. for energy of particles or holes)
Boson field
(with finite bandwidth for q,
ie. for energy of particle-excitations)

Define new fermion field (with finite bandwidth for q, via phi):

Comments:

$$
\begin{align*}
\psi_{\eta}(x) & =\Delta^{1 / 2} \sum_{k} e^{-|k| a} e^{-i k x} c_{k \eta} \\
\varphi_{\eta}(x) & =-\sum_{q>0} e^{-q a / 2} \frac{1}{\sqrt{n q}} e^{-i q x} b_{q \eta} \tag{2}\\
\psi_{q}^{(a)}(x) & =F_{\eta} \hat{\lambda}_{\eta}(x) e^{-i \varphi_{\eta}^{(}(x)} e^{-i \varphi_{\eta}(x)} \tag{3}
\end{align*}
$$

1. Eq. (3) does not require a cutoff (we may set $a=0$), because exponentials on RHS are normal ordered:

2. For $a=0$ we have an operator identity between new and old fields: $\psi_{\eta}^{(0)}(x)=\psi_{\eta}(x)$
3. For $a \neq 0$, the new field $\psi_{\eta}^{(a)}(x)$ is not identically equal to old field Their long-distance behavior is the same (this is what we are interested in), but short-distance behavior on scale of a is different (we don't care about it anyway).
4. Advantage of $a \neq 0$: two exponentials factors can be combined (unnormal-ordered).

1. Unnormal-ordering the bosonic exponential

(2)

Various common notations:

$$
\begin{align*}
& \psi_{\eta}^{(a)}(x)=a^{-\frac{1}{2}} F_{\eta}(x) e^{-i \phi_{\eta}(x)}, \quad F_{\eta}(x):=F_{\eta} e^{-i \Delta_{L}\left(N_{\eta}-\frac{1}{2}\right) x} \tag{3}\\
& \psi_{\eta}^{(a)}(x)=a^{-\frac{1}{2}} F_{\eta} e^{-i \Phi_{\eta}(x)}, \quad \Phi_{\eta}(x):=\Phi_{\eta}(x)+\Delta_{L}\left(N_{\eta}-\frac{1}{2}\right) x \tag{4}
\end{align*}
$$

$$
\begin{equation*}
\psi_{\eta}^{(a)}(x)=a^{-\frac{1}{2}} e^{-i} \tilde{\Phi}_{\eta}(x), \quad \tilde{\Phi}_{\eta}(x):=\Phi_{\eta}(x)-\theta_{\eta}, \quad F_{\eta}:=e^{-i \theta_{\eta}} \tag{5}
\end{equation*}
$$

Introduce
"phase operators" conjugate to N :
(theta's are sometime called

$$
F_{\eta}^{+}=e^{i \theta_{\eta}}, \quad F_{\eta}=e^{-i \theta_{\eta}}
$$

$$
\begin{aligned}
& {\left[N_{\eta}{ }^{n}, i \theta_{\eta^{\prime}}\right] \quad{ }_{\vdots}^{\prime \prime}={ }^{\prime \prime} \delta_{\eta \eta^{\prime}} \quad\left[\hat{N}_{\eta}, e^{ \pm i \theta_{\eta^{\prime}}}\right]= \pm \delta_{\eta \eta^{\prime}} e^{ \pm i \theta_{\eta^{\prime}}}(2)} \\
& {\left[\theta_{\eta}, \theta_{\eta^{\prime}}\right]:=\left\{\begin{array}{c}
i \pi \\
0 \\
-i \pi
\end{array}\right\} \text { if } \eta\left\{\begin{array}{l}
> \\
= \\
<
\end{array}\right\} \eta^{\prime} \quad \begin{array}{l}
\text { correct } \\
\text { notation }
\end{array}=(7.6,7) \text { ! }}
\end{aligned}
$$

(1), (2), (3) reproduce $\left[A, e^{B}\right]=c e^{B}$
(II.7.4) to (II.7.7), using $\left.e^{A} e^{B}=e^{B} e^{A} e^{c}\right\}$ if $c=[A, B]=c$-number (4)

But, (2) is sloppy notation that produces a contradiction:

$$
\begin{equation*}
0=\left(N_{\eta}-N_{\eta}\right)\left\langle\hat{N}_{\eta}\right| \theta\left|\hat{N}_{\eta}\right\rangle=\langle\underbrace{\left\langle N_{\eta}\right| \hat{N}_{\eta}}_{\eta} i \hat{N}_{\eta}-i \theta_{\eta} \underbrace{\hat{N}_{\eta}\left|N_{\eta}\right\rangle}_{=N_{\eta}\left|N_{\eta}\right\rangle} \stackrel{(9)}{=}\left\langle\hat{N}_{\eta}\right| 1 \mid \hat{N}_{\eta}\rangle=1 \tag{5}
\end{equation*}
$$

What went wrong?
Theorem: If X and Y are conjugate operators, meaning $[\mathrm{X}, \mathrm{i} \mathrm{Y}]=1$, and the spectrum of X is the set of discrete integers, then X is hermitian only in the space of states produced by acting on a reference state by periodic functions of Y, in other words, functions of exp(iY).
But: (11) contains states not periodic in theta, namely $\hat{\theta}\left|\hat{N}_{\eta}\right\rangle$ so N is not hermitian!
3. Commutators of bosonized expressions(use (1.3) with $a=0$)

$$
\varphi(x)=\varphi(x+\bar{n}\langle)
$$

$$
\begin{equation*}
\left\{\psi_{\eta}(x), \psi_{\left.\eta^{\prime}\left(x_{1}\right)\right\}}^{+} \sim\left\{F_{\eta}, F_{\eta^{\prime}}^{+}\right\}=0 \quad \text { if } \eta \neq \eta^{\prime}\right. \tag{1}
\end{equation*}
$$

$=[\Delta_{L} \underbrace{e^{-i \Delta_{L}\left(N-\frac{1}{2}\right)\left(x-x^{\prime}\right)}} \underbrace{-\underbrace{-i\left(\varphi^{+}(x)-\varphi^{+}\left(x^{\prime}\right)\right)} e^{-i\left(\varphi(x)-\varphi\left(x^{\prime}\right)\right)}}] A\left(x, x^{\prime}\right)$
if $x-x^{\prime}=\bar{n} L: \quad=1 \quad\left[e^{-i \frac{i \pi}{L} \frac{1}{2} \bar{n} L}\right]=(-1)^{\bar{n}} \quad=1$, since $\varphi(x)=\varphi(x+L)$
$A\left(x, x^{\prime}\right)=\left(e^{(1)}\left[\varphi(x), \varphi^{+}\left(x^{\prime}\right)\right] e^{-i \Delta_{l}\left(x \cdot x^{\prime}\right)}+e^{(2)}\left[\varphi\left(x^{\prime}\right), \varphi^{+}(x)\right]\right)$
(4)
$=\left(\frac{y}{1-y}+\frac{1}{1-y^{-1}}\right)=\sum_{n=0}^{\infty}\left(y^{n+1}+y^{-n}\right)=\sum_{n \in \mathbb{E}^{2}} y^{n}=L \sum_{\bar{n}} \delta\left(x-x^{\prime}-\bar{n} L\right)$

$\left\{\psi_{y}(x), \psi_{y^{\prime}(x)}^{f}\right\} \stackrel{(3)}{=} 2 \pi \sum_{\bar{n}} \delta\left(x-x^{\prime}-\bar{n} L\right)(-1)^{\bar{n}} \vee|$,$| \quad antiperiodic$

Linearized fermionic kinetic Hamiltonian:

$$
H_{0}=\sum_{k=-\infty}^{\infty} k_{x}^{x} c_{k \eta}^{+} c_{k \eta}^{x} \times, \quad k=\Delta_{L}(\eta-1 / 2)
$$

Energy of N-particle ground state $|N\rangle_{0}$:

$$
\begin{align*}
& \text { of N-particle } \tag{2}\\
& \text { state } \mid N)_{0}: \\
& E_{0}^{N}=\langle N| H|N\rangle_{0}
\end{align*}=\Delta_{L}\left\{\begin{array}{l}
\sum_{n=1}^{N}(n-1 / 2) \\
\text { for }^{0} N \geq 0 \\
\sum_{n=N+1}^{0}-(n-1 / 2) \text { for } N<0
\end{array}\right\}=\frac{\Delta L}{2} N^{2}
$$

(2)

Consider:

$$
\begin{equation*}
\left[H_{0}, b_{q}^{\dagger}\right]=\sum_{k k^{\prime}} k[\underbrace{\left.c_{k}^{\dagger} c_{k}, c_{k^{\prime}+q}^{\dagger} c_{k^{\prime}}\right]}_{\delta k, k^{\prime}+q} \frac{i}{\sqrt{n_{q}}}=\sum_{k} k\left(\underset{k \rightarrow k+q}{\left(c_{k}^{\dagger} c_{k-q}-c_{k+q}^{\dagger} c_{k}\right) \frac{i}{\sqrt{n_{q}}}}=q b_{q}^{\dagger}\right. \tag{3}
\end{equation*}
$$

Thus, boson creation op. are energy ladder op:

$$
\begin{equation*}
H_{0} b_{q}^{t}|N\rangle_{0}=\left(E_{0}^{N}+q\right) b_{q}^{t}|N\rangle_{0} \tag{4}
\end{equation*}
$$

The only bosonic operator
that also satisfies
(2) and (3) for all q is:
$\left[H_{0}, b_{q}^{t}\right]=q b_{q}^{+}$

$$
\begin{equation*}
H_{0}:=\sum_{q>0} q b_{q}^{t} b_{q}+\frac{\Delta_{L}}{2} \hat{N}^{2} \tag{s}
\end{equation*}
$$

(seemingly quartic in $\left.c^{\dagger} c c^{\dagger} c!!\right)$
hence: $(1)=(5)$
5. Imaginary-time-ordered boson correlator at $T=0$
$\begin{aligned} & \text { Imaginary-time } \\ & \text { evolution: }\end{aligned} \quad \phi(\tau, x) \stackrel{(I \pi .2 . q)}{=}-\sum_{q>0} \frac{e^{-a q / 2}}{\sqrt{n_{q}}}\left(e^{-q(i x+\tau)} b_{q}+e^{q(i x+\tau)} b_{q}^{\dagger}\right)=\phi(z)$

$$
\begin{align*}
& \langle 0| \tau \phi(z) \phi(0)|0\rangle_{0} \quad\langle\phi(-z) \phi(0)\rangle \text { by time translational invariance } \\
& =\theta(\tau)\langle\phi(z) \phi(0)\rangle+\theta(-\tau)\langle\phi(0) \phi(z)\rangle \\
& \sigma=\operatorname{sign}(\tau) \\
& =\langle\phi(\sigma z) \phi(0)\rangle \text {, in }\left\langle\left(b_{q}+b_{q}^{t}\right)\left(b_{q}+b_{q}^{t}\right)\right\rangle \text { only } \delta_{q q} b_{q} b_{q}^{t} \text { contributes } \\
& =\sum_{q>0} \frac{e^{-a q}}{n} e^{-q z \sigma}\langle\overbrace{\left\langle b_{q} b_{q}^{t}\right\rangle}^{=1} \quad \text { with } q=\Delta_{L n}, \quad y=e^{-\Delta_{L}(z \sigma+a)} \\
& =\sum_{n=1}^{\infty} \frac{1}{n} y^{n}=-\ln (1-y)=-\ln \left(1-e^{-\Delta_{L}(z \sigma+a)}\right) \xrightarrow[L \rightarrow \infty]{ }-\ln \left(\Delta_{L}(\sigma z+a)\right) \tag{J}
\end{align*}
$$

$\begin{array}{lll}\text { Time evolution of } & F_{\eta}\left(\tau_{1} x\right)=e^{H \tau} F_{\eta} e^{-i \Delta_{L}\left(N_{\eta}-\frac{1}{2}\right) x} e^{-H \tau}=F_{\eta} e^{-\Delta_{L}\left(N_{\eta}-\frac{1}{2}\right) z} \\ \text { Klein factor: } & F_{\eta}^{+} & F_{\eta}^{+}\end{array}$
6. Using bosonization to calculate fermion correlators

Theorem: for free boson Hamiltonian $\hat{H}=\sum_{q} \omega_{q} b_{q}^{+} b_{q}$ and $\left.\hat{B}=\sum_{q} \lambda_{q} b_{q}+\hat{X}_{q} b_{q}^{+}\right)$ ground state or thermal expectation values of exponential of bosons satisfy:

$$
\begin{equation*}
\left\langle e^{\hat{B}}\right\rangle=e^{1 / 2\left\langle\hat{B}^{2}\right\rangle} \text {, where }\langle\hat{O}\rangle=T_{r}\left(e^{-\beta \hat{H}} \hat{O}\right) / T_{r} e^{-\beta \hat{H}} \tag{1}
\end{equation*}
$$

(1) and (II.10.2iii) imply: $\left\langle e^{\hat{B}_{1}} e^{\left.\hat{B_{2}}\right\rangle}=e^{\left\langle\hat{B}_{1} \hat{B}_{2}+\frac{1}{2} \hat{B}_{1}^{2}+\frac{1}{2} \hat{B}_{2}^{2}\right\rangle}\right.$

Bosonize fermion correlator:

$$
\begin{align*}
& \langle 0| T \psi(z) \psi^{\dagger}(0)|0\rangle=\frac{1}{a}\langle 0| T \underbrace{F F^{+}}_{=1} e^{-\Delta_{L}(N-1 / 2) z} e^{-i \phi(z)} e^{i \phi(0)} \mathbb{R}^{*}(0) \tag{3}\\
& \begin{array}{l}
\text { (2) } \left.\frac{\sigma}{a} e^{-\Delta L z / 2} e^{\langle 0| \tau \phi(z) \phi(0)-\frac{1}{2} \phi(z) \phi(z)-\frac{1}{2} \phi(0) \phi(0)|0\rangle}\right)
\end{array} \tag{4}\\
& \xrightarrow{L \rightarrow \infty} \frac{\sigma}{a} e^{-\left(\ln \psi_{L}(\sigma z+a)-2 \frac{1}{2} \ln \phi_{L} a\right)} \\
& \begin{array}{c}
\langle T \phi(z) \phi(\delta)\rangle \\
(6.5)=-\ln \Delta_{L}(\sigma z+a)
\end{array} \\
& \begin{array}{c}
\langle T \phi(z) \phi(\delta)\rangle \\
(6.5)=-\ln \Delta_{L}(\sigma z+a)
\end{array} \\
& =\frac{\sigma}{a} \frac{a}{\beta z+a \sigma}=\frac{1}{z+\sigma a}=(I .11 .5) \\
& \text { [if } L \text { is kept finite, } \\
& \text { one recovers (I.11.6)] }
\end{align*}
$$

7. Vertex operators: general exponential of boson fields

Definition of "vertex operator": with charge $\lambda \in \mathbb{R}$

$$
\begin{align*}
& \begin{array}{l}
\text { Definition of } \\
\text { "vertex } \\
\text { operator": } \\
\text { with charge } \lambda \in \mathbb{R}
\end{array} V_{\lambda}^{(\eta)}(z):=\Delta_{L} \lambda^{2 / 2} \underbrace{\underbrace{x} e^{i \lambda \phi_{\eta}(z) x} x}=e^{i \lambda \varphi_{\eta}^{+}(z)} e^{i \lambda \varphi_{\eta}(z)} e^{-\lambda^{2} / 2} e^{i \lambda \phi_{\eta}(z)} \tag{1}\\
& \begin{array}{l}
\text { unnormal-order, } \\
\text { producing a factor }
\end{array} \\
& e^{-\lambda^{2}\left[\varphi^{\prime}(z), \varphi(z)\right]} \\
& =e^{-\lambda^{2} \ln \Delta_{L} a}
\end{align*}
$$

fermionic description: $\quad \psi_{L / R}^{(t+x)}(x) \stackrel{(1.8 .1)}{=} \Delta_{L}^{1 / 2} \sum_{k} e^{-i k x} C_{k L / R}=: \tilde{\psi}_{L / R}{ }^{(\pm \pm x)}$
(mathematical L/R-movers)

Kinetic energy:

$$
\begin{equation*}
H_{0}^{(5.1)} \sum_{\eta=L, R} \sum_{k=-\infty}^{\infty} k x_{x}^{x} c_{k \eta}^{+} c_{k \eta}{ }_{x}^{\eta} \tag{3}
\end{equation*}
$$

bosonic description:

$$
\begin{equation*}
\phi_{L / R}(x) \stackrel{(\text { I.z.q) }}{=}-\sum_{q>0} \frac{e^{-a q / 2}}{\sqrt{n_{q}}}\left[e^{-i q x} b_{q L / R}+e^{i q x} b_{q L / R}^{\dagger}\right]=: \tilde{\phi}_{L / R}(\pm x) \tag{4}
\end{equation*}
$$

(mathematical L/R-movers)

Kinetic energy:

$$
\begin{align*}
& H_{0}^{(5.5)}=\sum_{\eta=L, R}\left[\sum_{q>0} q b_{q \eta}^{t} b_{q \eta}+\frac{\Delta_{L}}{2} \hat{N}_{\eta}^{2}\right] \tag{s}\\
&= \sum_{\eta=L, R}\left[\int_{-L / 2}^{L / 2} \frac{d x}{2 \pi} \times \frac{1}{2}\left(\partial_{x} \tilde{\phi}_{\eta}\right)^{2} x+\frac{\Delta_{L}}{2} \hat{N}_{\eta}^{2}\right] \tag{6}\\
& \leftrightarrow\left(\frac{1}{u_{q}} n_{q}\right)^{2} \sim q
\end{align*}
$$

9. Electron-electron interactions

$$
\begin{equation*}
\psi_{\text {phys }}=e^{-i k_{f} x} \tilde{\psi}_{c}(x)+e^{i k_{f} x} \tilde{\psi}_{R}(x) \tag{3}
\end{equation*}
$$

$$
\left.\left.\begin{array}{lllll}
e^{-2 i k_{f} x}\left[R^{+}\right. & R & R^{+} & L & 1 \\
e^{-4 i k_{f} \times}[& +R^{+} & L & L & J
\end{array} \quad \begin{array}{l}
\text { " }
\end{array}\right\} \begin{array}{l}
\text { Umklapp } q \sim 2 k_{F} \\
\text { double-Umklapp } q \sim 4 k_{F}
\end{array}\right\} \begin{aligned}
& \text { drop: } \\
& \text { high- } \\
& \text { energy! }
\end{aligned}
$$

Tomonaga-Luttinger model:
$\begin{aligned} & \text { this is already in } \\ & \text { bosonized form, sirce }\end{aligned} \quad \tilde{\rho}_{L / R}(x)= \pm \partial_{x} \tilde{\phi}_{L / R}(x)+\Delta_{L} \hat{N}_{L / R}$

$$
\begin{equation*}
\text { Hint }=\int_{-L / 2}^{L / 2} \frac{d_{x}}{2 \pi} x\left[g_{2} \tilde{\rho}_{L}(x) \tilde{\rho}_{R}(x)+\frac{1}{2} g_{L}\left(\tilde{\rho}_{L}^{2}(x)+\tilde{\rho}_{R}^{2}(x)\right]\right] \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& \text { (1) } \\
& =\frac{1}{2} \int d x d x^{\prime} \psi^{+}(x) \psi^{+}\left(x^{\prime}\right) \underbrace{V_{e e}\left(x-x^{\prime}\right)}_{\delta\left(x-x^{\prime}\right)} \psi\left(x^{\prime}\right) \psi(x) \tag{2}\\
& =\frac{1}{2} \int \frac{d x}{2 \pi} \frac{d x^{\prime}}{2 \pi} \delta\left(x-x^{-x}\right)\left\{\begin{array}{l}
g_{4}^{2}\left[\begin{array}{l}
\tilde{\psi}_{R}^{+}(x) \\
g_{2}\left[R^{+}\right. \\
R^{+}\left(x^{\prime}\right) \\
L^{+} \\
\tilde{\psi}_{R}\left(x^{\prime}\right) \\
\tilde{\psi}_{R}
\end{array} \tilde{\psi}_{R}(x)\right]
\end{array}+R \leftrightarrow L\right. \tag{4}\\
& \hat{V}_{e e}=\frac{1}{2 L} \sum_{k k^{\prime} q}^{a 11} V_{e c}(q) \underbrace{\substack{+-q c^{c}+q^{\prime}+q \\
c^{\prime}}} c_{k}
\end{align*}
$$

