Lecture II - Bosonization Identity
Summary: lecture I -fermions

(2)

$$
\begin{align*}
& \left\{\psi_{\eta}(x), \psi_{\eta^{\prime}}^{+}\left(x^{\prime}\right)\right\}=\delta_{\eta \eta^{\prime}} 2 \pi \delta_{a}\left(x-x^{\prime}\right) \tag{s}\\
& H=\sum_{k \eta}^{\prime} v_{f} k c_{k \eta}^{+} c_{k \eta} \tag{7}\\
& \left\langle\tau \psi_{\eta}^{\left.\Gamma^{z}(z) \psi_{\eta^{\prime}}^{f}(0)\right)}=\frac{\delta_{\eta \eta^{\prime}} e^{\pi(\sigma+1) / L}}{\frac{L}{\pi} \sinh \left[\frac{\pi}{L}(z+\sigma a)\right]} \xrightarrow{L \rightarrow \infty} \delta_{\eta \eta^{\prime}} \frac{1}{z+\sigma a}\right. \tag{8}\\
& \begin{array}{l}
\text { smeared } \\
\text { delta- } \\
\delta_{a}(x)
\end{array}
\end{align*}
$$

Summary: lecture I -bosons

$$
\begin{aligned}
& \hat{N}_{\eta}=\sum_{k}{ }_{x}^{x} C_{k \eta}^{t} C_{k \eta}{ }_{x}^{x} \\
& b_{q \eta}=\frac{-i}{\sqrt{n_{q}}} \sum_{k} c_{k-q, \eta}^{t} c_{k \eta}
\end{aligned}
$$

$$
\begin{align*}
& {\left[N_{\eta}, b_{q \eta}^{f}\right]=\left[N_{\eta}, b_{q \eta}\right]=0} \\
& {\left[b_{q \eta^{\prime}}, b_{q \eta^{\prime}}\right]=\left[b_{q \eta}, b_{q^{\prime} \eta^{\prime}}^{\dagger}\right]=0} \\
& q=\Delta_{L} n_{q}, \quad 0<n_{q} \in \mathbb{Z}^{+} \tag{8}\\
& \rho_{\eta}(x)={ }_{i}^{x} \psi_{\eta}^{t}(x) \psi_{\eta}(x)_{x}^{x}=\Delta_{L} N_{\eta}+\partial_{x} \phi \tag{10}\\
& \begin{array}{l}
\phi_{\eta}(x)=\varphi_{\eta}(x)+\varphi_{\eta}^{+}(x), \quad \text { (9) } \rho_{\eta}^{\rho}(x)=\psi_{\eta}^{k}(x) \psi_{\eta}(x){ }_{x}^{x}= \\
{\left[\varphi(x), \varphi^{+}\left(x^{\prime}\right)\right] \quad \text { (1) } \quad\left[\phi(x), \partial_{x^{\prime}} \phi\left(x^{\prime}\right)\right]=2 \pi i\left[\delta_{a}(x)-\frac{1}{L}\right]}
\end{array} \tag{12}\\
& =\ln \left[i \Delta_{L}\left(x-x^{\prime}-i a\right)\right] \quad\left[\phi(x), \phi\left(x^{\prime}\right)\right]=-i \pi \varepsilon_{a}\left(x-x^{\prime}\right) \tag{13}
\end{align*}
$$

$\frac{\text { Outline }}{\text { 1. Bosonic reorganization of Fork space }}\left|\left\{n_{k \eta}\right\} \in\{0,1\}\right\rangle \Leftrightarrow\left\{N,\left\{m_{q \eta}\right\} \in 0,1, \ldots\right.$,
2. Number ladder operators - "Klein factors" F

$$
\begin{aligned}
& F^{\dagger}|N\rangle=|N+1\rangle \\
& F|N\rangle=|N-1\rangle
\end{aligned}
$$

3. Bosonic coherent states

$$
b_{q} \psi|N\rangle_{0}=\alpha_{q} \psi|N\rangle_{0}
$$

5. Action of fermion field on N -particle ground state

$$
\psi|N\rangle_{0}=\underbrace{e^{\sum_{q} \alpha_{q} b_{q}^{+}} F \lambda|N\rangle}_{=e^{-i \varphi^{+}}}
$$

6. Action of fermion field on general N -particle state

$$
\psi|N\rangle=F \lambda e^{-i \varphi} e^{-i \varphi^{t}}|N\rangle
$$

holds for general state, hence we have operator identity

$$
\psi=F \lambda e^{-i \varphi} e^{-i \varphi^{\dagger}}
$$

 (for $\cdot R$ Spectres: \Rightarrow

$$
|\vec{N}\rangle_{0}=\left|N_{1}, \ldots, N_{M}\right\rangle=\left(C_{1}\right)^{N_{1}}\left(C_{2}\right)^{N_{2}} \ldots\left(C_{M}\right)^{N_{M}} \mid \overrightarrow{\text { Bedmi ground? } z_{\text {tate }}}
$$

N -particle ground state:
$\left\{\begin{array}{lllll}C_{N_{\eta} \eta}^{7} & C_{N_{\eta}-1, \eta}^{7} & \cdots & C_{\imath \eta}^{+} & \\ 1 & & & N_{\eta}>0 \\ 1 & & \text { for } & N_{\eta}=0 \\ C_{N_{\eta}+1, \eta} & C_{N_{\eta+2}, \eta} & \ldots & C_{\text {on }} & \\ & N_{\eta}<0\end{array}\right.$
(3)
$|\overrightarrow{0}\rangle=|0,0\rangle \quad|2,-1\rangle$

$\vec{V}\rangle_{0}$

Each

 has no particle-hole$$
b_{q \eta}|\vec{N}\rangle_{0}=0
$$

(4)
 excitations, and hence
acts as vacuum-state $\sum_{k} c_{k-q} c_{k}$ acts as vacuum-state for boson operators:

Completeness
Every N-particle state can be $\quad|0\rangle 0$
written i.t.o. ph excitations $\quad[\quad$ acting on N-particle ground state \int

Intuitive reason for (2): $\quad \begin{gathered}\text { is a linear combination of } \\ b\end{gathered} H_{\vec{N}}$!! acting on

$$
\begin{align*}
& \text { Conclusion: } \tag{3}\\
& =\operatorname{span}\left\{\left|\vec{N}\left\{m_{q \eta}\right\}\right\rangle, N_{\eta} \in \mathbb{Z}, m_{q \eta} \in \mathbb{N}_{+}\right\}, \quad\left|\vec{N},\left\{m_{q \eta}\right\}\right\rangle=\prod_{q \eta} \frac{1}{\left(m_{q \eta}!\right)^{1 / 2}}\left(b_{q \eta}^{+m_{q n}}\right)^{m_{q n}}|\vec{N}\rangle_{0} \\
& =\operatorname{span}\left\{\left|\left\{n_{k \eta}\right\}\right\rangle, n_{k \eta} \in\{0,1\}\right\} \tag{5}\\
& \operatorname{Tr}_{f}\left[e^{-\beta \hat{H}_{f}}\right]=Z_{f}=Z_{b}=\operatorname{Tr}_{b}\left[e^{-\beta \hat{H}_{b}}\right]
\end{align*}
$$

$c^{\dagger} c$, and "vice versa".

Formal proof: Haldane, 1981; vD, App. B
II. 2 Number laddéerfop operators - "KN :in faetdrsy" 1

fermionic phase factor:

$$
\left\{\begin{array}{l}
F_{\eta}^{+} \\
F_{\eta}
\end{array}\right\}=\left.\sum_{\vec{N}} \sum_{\left\{m_{q}\right\}} \hat{T}_{\eta}\left|\vec{N} \pm I_{\eta} ;\left\{m_{q \eta}\right\}\right\rangle\left\langle\vec{N} ; \vec{N}_{q} m_{q}\right\}\right|_{(5)}
$$

Equivalent definition:

Klein factors do not
affect ph structure:

$$
\left[F_{\eta}, b_{q \eta^{\prime}}\right]=\left[F_{\eta}, b_{q \eta^{\prime}}^{\dagger}\right]=\left[F_{\eta}^{+}, b_{q \eta^{\prime}}\right]=\left[F_{\eta}^{\dagger}, b_{q \eta^{\prime}}^{\dagger}\right]=0
$$

Klein factors of
same species: $\eta=\eta^{\prime}$

$$
\begin{aligned}
& F_{\eta}^{+} F_{\eta}=1=F_{\eta} F_{\eta}^{\dagger}, \\
& \text { (so } F \text { is unitary) }
\end{aligned}
$$

$$
\begin{equation*}
F_{\eta}^{+} F_{\eta}^{t} \neq 0 \quad F_{\eta} F_{\eta} \neq 0 \tag{2}
\end{equation*}
$$

so F is NOT a fermionic operator and also NOT a Majorana

Klein factors of
different species,

$$
\begin{aligned}
& \text { different species, } \quad \eta \neq \eta^{\prime} \\
& \text { ANTIcommute! }
\end{aligned}
$$

$$
\begin{align*}
& F_{\eta} F_{\eta^{\prime}}=-F_{\eta^{\prime}} F_{\eta}, \quad F_{\eta}^{\dagger} F_{\eta^{\prime}}^{\dagger}=-F_{\eta^{\prime}}^{\dagger} F_{\eta}^{\dagger} \\
& F_{\eta}^{\dagger} F_{\eta^{\prime}}=-F_{\eta^{\prime}} F_{\eta}^{+}, \quad F_{\eta} F_{\eta^{\prime}}^{\dagger}=-F_{\eta^{\prime}} F_{\eta}^{\dagger} \tag{3}
\end{align*}
$$

(because the states produced by left- or right-hand side differ by interchanging two fermions)

Compact form for (2,3):
ladder properties:

$$
\begin{align*}
& \left\{F_{\eta}, F_{\eta^{\prime}}^{+}\right\}=2 \delta_{\eta \eta^{\prime}}, \quad \text { for all } \quad \eta \cdot \eta^{\prime} \tag{4}\\
& \left\{F_{\eta}, F_{\eta^{\prime}}\right\}=\left\{F_{\eta}^{+}, F_{\eta^{\prime}}^{+}\right\}=0, \quad \text { for all } \eta \neq \eta^{\prime} \tag{5}\\
& N_{\eta} F_{\eta^{\prime}}^{+}=F_{\eta^{\prime}\left(N_{\eta}+\delta_{\eta \eta^{\prime}}\right) \Rightarrow\left[N_{\eta}, F_{\eta^{\prime}}^{+}\right]=+\delta_{\eta \eta^{\prime}} F_{\eta}^{+}}^{N_{\eta} F_{\eta^{\prime}}=F_{\eta^{\prime}}\left(N_{\eta}-\delta_{\eta \eta^{\prime}}\right) \Rightarrow\left[N_{\eta}, F_{\eta^{\prime}}\right]=-\delta_{\eta \eta^{\prime}} F_{\eta}} \tag{6}
\end{align*}
$$

II. $3 \psi_{\eta}(x)|\bar{N}\rangle_{0}$ is an eigenstate of boson annihilation operator b (1)

Recall:

$$
\begin{equation*}
b_{q \eta}^{(2.2)}=\frac{-i}{\sqrt{n_{q}}} \sum_{k} c_{k-q, \eta}^{t} c_{k \eta}, \quad \psi_{\eta}(x) \stackrel{(1.2)}{=} \Delta_{L}^{\prime / 2} \sum_{k^{\prime}}^{\sigma^{\prime}} e^{\text {(take strictly }} \tag{2}
\end{equation*}
$$

Consider:

$$
\begin{align*}
{\left[b_{q \eta^{\prime}}, \psi_{\eta}(x)\right] } & =\frac{-i}{\sqrt{n_{q}}} \sum_{k} \Delta_{L}^{1 / 2} \sum_{k^{\prime}}[\underbrace{c_{-q, \eta^{\prime}} c_{k \eta^{\prime},} c_{k_{\eta}^{\prime}}}_{-\delta_{\eta \eta^{\prime}} \delta_{k-q, k^{\prime}} c_{k \eta^{\prime}}^{\dagger} \quad k^{\prime}=k-q}] e^{-i k^{\prime} x} \tag{3}\\
& =\delta_{\eta \eta^{\prime}}[\underbrace{\left.\sqrt{\sqrt{n_{q}}} e^{i q x}\right]}_{\equiv \alpha_{q}(x)} \underbrace{\Delta_{L}^{1 / 2} \sum_{k} e^{-i k x} c_{k \eta}}_{\psi_{\eta}(x)}=\delta_{\eta \eta^{\prime}} \alpha_{q}(x) \psi_{\eta}(x) \tag{4}
\end{align*}
$$

(5) $]$

$$
\left[\begin{array}{ll}
\text { Similarly: } \\
\text { (for future reference) }
\end{array} \quad\left[b_{q \eta^{\prime}}^{+}, \psi_{\eta}(x)\right]=\delta_{\eta \eta^{\prime}} \alpha_{q}^{*}(x) \psi_{\eta}(x)\right.
$$

$\begin{aligned} & \text { Act with (3) on } \stackrel{\rightharpoonup}{N}- \\ & \text { particle ground state: }\end{aligned} \quad b_{q \eta^{\prime}} \psi_{\eta}(x)|\vec{N}\rangle_{0}-\psi_{\eta}(x) \underbrace{b / \eta|\vec{N}\rangle_{0}}_{(4.4)=0} \stackrel{(4)}{=} \delta_{\eta \eta^{\prime}} \alpha_{q}(x) \psi_{\eta}(x)|\vec{N}\rangle_{0}$
So, $\psi_{\eta}(x)|\vec{N}\rangle_{0} \quad$ is an eigenstate of $b_{q \eta}$ with eigenvalue $\quad \alpha_{q}(x) \quad \Rightarrow$ (1)
Consider eigenstate of b : ("Boson coherent state")

$$
b|\alpha\rangle=\alpha|\alpha\rangle, \text { with } \alpha \in \mathbb{C}
$$

Alternative representation: (unnormalized)

$$
\begin{equation*}
|\alpha\rangle=e^{\alpha b^{t}}|0\rangle \tag{4}
\end{equation*}
$$

Check:

$$
\begin{equation*}
b|\alpha\rangle=\underbrace{b e^{\alpha\left(b^{+}\right.}|0\rangle-e^{\alpha b^{+}}(\underbrace{(b+\alpha)|0\rangle}=0}_{(10, z i)}=\alpha|\alpha\rangle \tag{5}
\end{equation*}
$$

(10.2i): $A e^{B}=e^{B}(A+c)$, with $c=[A, B]=\alpha$ here: $A=b, B=\alpha b^{+}$
II. 4 Standard operator identities (see rDS, App. C, for simple proofs)
II. 4 Standard operator identities

1. Baker-Hausdorff: $\left.\quad e^{-B} A e^{B}=A+[A, B]+\ldots+\frac{1}{n!}[[A, B], B] \ldots B\right]+\ldots$
2. $[A, B]=c$ commutes with A and B If $[A, B]=c$ and $[A, C]=[B, C]=0$, then
from Baker-Hausdorff
generalization of (i)
[Taylor expand $f(A)$, obtain $A^{\wedge} n$ by induction from (i)]
(ii) with $f(A)=\exp (A)$
(i) $e^{-B} A e^{B}=A+c$ or $\left[A, e^{B}\right]=c e^{B}$
(ii) $e^{-B} f(A) e^{B}=f(A+c) \quad(\exp (B)$ shifts A by c units $)$
(iii) $\quad e^{A} e^{B}=e^{A+B+c / 2}=e^{B} e^{A} e^{c}$
3. $[A, B]=D$ is proportional to B If $[A, B]=d B$ and $[A, d]=[B, d]=0$, then

$$
\begin{array}{ll}
& \text { (i) } \quad f(A) B=B f(A+d) \\
\begin{array}{ll}
\text { (i) with } f(A)=\exp (A) & \text { (ii) } \\
e^{A} B & =B e^{A+d} \\
\begin{array}{ll}
{[\text { Taylor expand exp (B), obtain }} \\
B^{\wedge} \text { n by induction from (ii)] }
\end{array} & \text { (iii) }
\end{array} e^{A} e^{B}=e^{B e^{d}} e^{A}
\end{array}
$$

(B raises A by d units)

II. 6 Action of fermion field on general N-particle state $|\vec{N}\rangle_{(11,2)}^{=} f\left(\left\{b_{q \eta}^{t}\right\}\right)|\vec{N}\rangle_{0} \quad 12$

Operator identities:

$$
\begin{align*}
& \psi_{\eta}(x) f\left(\left\{b_{q \eta}^{t}\right\}\right)=\underbrace{\left(\left\{b_{q \eta}^{t}-\delta_{\eta \eta^{\prime}} \alpha_{q}^{*}(x)\right)\right.}_{e^{-i \varphi_{\eta}(x)} f\left(\left\{b_{q \eta}^{\dagger}\right\}\right) e^{i \varphi_{\eta}(x)}} \psi_{\eta}(x) \tag{1}\\
& \text { Consider: } \\
& {\left[\begin{array}{c}
(10.2 i i), A=b^{+}, \quad B=i \varphi, C=-\alpha \\
f(A+c)=e^{-B} f(A)_{e}+B
\end{array}\right]} \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\psi_{\eta}(x)|\vec{N}\rangle=\psi_{\eta}(x) f\left(\left\{b_{q q}^{t}\right\}\right)^{(1)}|\vec{N}\rangle_{0} \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& {\left[b^{+}, \varphi^{+}\right]=\left[b_{1}^{+}, F\right]=\left[b^{+}, N\right]=0}
\end{aligned}
$$

$$
\begin{align*}
& \stackrel{\text { (1) }}{=} \underbrace{\underbrace{f\left(\left\{b_{q \eta}^{t}-\delta_{\eta \eta} \alpha_{q}^{*}(x)\right.\right.})}_{\text {since }} \underbrace{e^{-i \varphi_{\eta}^{t}(x)} F_{\eta} \hat{\lambda}_{\eta}(x)}_{(11.2) L_{m}=\underbrace{e_{q}(x)}|\vec{N}\rangle_{0}}|\vec{N}\rangle_{0} \tag{4}\\
& \left.\psi_{\eta} x\right)|\vec{N}\rangle=F_{\eta} \hat{\lambda}_{\eta}(x) e^{-i \varphi_{\eta}^{+}(x)} e^{-i \varphi_{\eta}(x)}|\vec{N}\rangle \\
& \text { hence as operator } \\
& \text { identity for } \psi=F \lambda e^{-i \varphi} e^{-i \varphi}
\end{align*}
$$

