Bosonization for Beginners
Lectures given by Jan vo Delft
School on Low Dimensional Nanoscopic Systems
Harish-chandra research Institute
Allahabad, India
Jan 28 - Feb 9, 2008

Jan van Delft \dagger
Ludwig-Maximilians-Universität München
www.theorie.physik.uni-muenchen.de/~|svondelft
Internships - Summer Research Program
www.nano-initiative-munich.de/summer
Masters programme in Theoretical and Mahematical Physics www.theorie.physik.uni-muenchen.de/TMP

International Doctorate Program NanoBioTechnology www.cens.de/doctorate-program.html

In 1D, "bosonization relations" of the following form hold:

Goal of lectures:

- explain origin of these relations
- illustrate them with some canonical examples

Literature:

- Bosonization for Beginners - refermionization for experts, Jan vo Delft \& Herbert Schoeller,
Ann. Physics 7, 225-306 (1998), cond-mat/9805275
- Simple Bosonization Solution of the 2-channel Kondo Model: I.

Analytical Calculation of Finite-Size Crossover Spectrum,
Gergely Zarand and Jan vo Delft,
Phys. Rev. B. 61, 6918 (2000) [including appendices: cond-mat/9812192]

- Interacting fermions in one dimension: The Tomonaga-Luttinger model K. Schönhammer, cond-mat/9710330

Popular applications

(pioneered by: Luttinger, Schotte \& Schotte, Mattis \&Lieb, Luther \& Peschel, Haldane applications: Kane \& Fisher, Wen, Shankar...)

1. Interactions in 1 D

Since fermions in 1D cannot pass each other, interactions are "strong" and dramatically change the physics (e.g. spin-charge separation)

Applications:
nanotube

$$
x \times x \times x \times 3
$$

organic molecules
semiconductor quantum wires

quantum Hall edge states

Interactions in 1D:

Interacting model becomes exactly solvable!
(Emery \& Kivelson, '92)

$$
\left|\psi_{i n}\right\rangle: \sim
$$

Spin-flip term:

$$
S^{+} \psi_{\downarrow}^{t}(0) \psi_{\uparrow}(0)+S^{-} \psi_{\uparrow}^{+}(0) \psi_{\downarrow}(0)
$$

Refermionize: $d^{t} \psi_{s}+\quad d \psi_{s}^{t} \longleftarrow$ QUADRATIC !!.

Heuristic plausibility argument for bosonization relation

How can it be true that:

$$
\begin{equation*}
\psi \sim e^{-i \phi} \tag{1}
\end{equation*}
$$

For 1-D bosons, with linear dispersion:

$$
\begin{equation*}
\langle\phi(x) \phi(0)\rangle \sim-\ln x \tag{2}
\end{equation*}
$$

For 1-D fermions, with linear dispersion:

$$
\begin{equation*}
\left\langle\psi^{t}(x) \psi(0) \quad \sim \frac{1}{x}\right. \tag{3}
\end{equation*}
$$

or, using (1):

$$
\begin{equation*}
\sim\left\langle e^{i \phi(x)} e^{-i \phi(0)}\right\rangle \tag{4}
\end{equation*}
$$

standard identity for bosonic operators:

$$
\begin{equation*}
\sim e \quad\langle\phi(x) \phi(0)-\phi(0) \phi(0)\rangle \tag{5}
\end{equation*}
$$

using (2):

$$
\begin{equation*}
\sim \quad \frac{1}{x}=(3)^{v} \tag{6}
\end{equation*}
$$

Questions:

$$
\begin{array}{r}
\psi_{\sigma} \sim F_{\sigma} e^{-i \phi_{\sigma}} \quad(\sigma= \\
\text { only in } D \text {, infinite bandwidth }
\end{array}
$$

How general is (5.1)?
Does (5.1) rely on linear dispersion? ND!
Is (5.1) an operator identity?
YES! On what Fork space?

Commutation relations?

$$
\left[\phi(x), \partial_{x} \phi(0)\right]=\delta(x) \stackrel{!!}{\Longleftrightarrow}\left\{\psi(x), \psi^{\dagger}(0)\right\}=\delta(x)
$$

Several species of electrons?

$$
\left\{\psi_{\uparrow}(x), \psi_{\downarrow}^{+}(0)\right\} \stackrel{?}{=} 0 \Leftrightarrow\left\{\begin{array}{l}
\left\{F_{\downarrow}, F_{\uparrow}^{+}\right\}=0 \\
\text { Klein factors! }
\end{array}\right.
$$

Role of cut-offs? Infrared: $\frac{1}{L} \quad$ Ultraviolet: $\quad \Lambda \sim \frac{1}{a}$
Finite-size effects?

$$
\frac{1}{L} \neq 0
$$

Useful !!

Outline of lecture I: 1-D fermions \& bosons

1. Linearization of fermion spectrum
2. Normal ordering
3. Properties of 1 d fermion fields
4. Density fluctuations - bosonic excitations
5. 1D fermion correlators
6. Properties of 1 d boso
I. 1 Linearization of fermion spectrum \quad (ignore spin)

(1) For $|k| \ll \subset P F$, linearization is justified:

$$
\begin{align*}
\varepsilon_{p} & =\frac{\mid p^{2}-p_{F}^{2}}{2 m}=\frac{p_{f}^{2}+2 p_{F} k+k^{2}-p_{F}^{2}}{2 m}=v_{F} k\left(1+\frac{k}{2 p_{F}}\right) \tag{1}\\
& \simeq v_{F} k \quad \text { if }|k|<r \simeq p_{F} \quad \text { curvature-effect } \tag{2}
\end{align*}
$$

Neglected terms [order (k/kF)] describe curvature effects: current research topic!
Fermi-Luttinger liquid: Spectral function of interacting one-dimensional fermions, Khodas, Pustilnik, Kamenev, Glazman, PRB, 76, 155402 (2007)

Replacing (6.1) by (6.2) is justified if we are interested only in long-wavelength / low/energy properties, with $|q| \ll \Gamma$ anyway, i.e. in excitation energies ω, T, V
In this case, we may as well send cutoff $\Gamma \rightarrow \infty$, and replace theory $(1) \longrightarrow 2$
Corresponding approximation for electron fields, step by step:
(A) (B)

Drop high-energy excitations, assuming they don't matter for low-energy properties:

Step 1: drop B

$$
\begin{align*}
\Rightarrow \psi_{\text {phys }}(x) " & =e^{-i p \neq x} \psi_{L}(x)+e^{i p \in x} \psi_{R}(-x) \tag{2}\\
\text { with } \quad & \psi_{L_{R}}(x) \tag{3}
\end{align*}
$$

I. 2 Properties of id fermion fields

Cutoff means: new fields $\psi_{L / R}(x)$ can resolve spatial structures only if they are coarser than $/ \Gamma$;

Step 2: to get a mathematically simpler, cleaner theory, now take cutoff to infinity, i.e. add "positron states" (since they did not matter for low excitation energies anyway):

So, write:

$$
\eta=L, R
$$

$$
\begin{aligned}
& (x \text { is smeared on scale a) } \\
& \psi_{\eta}(x)=\Delta^{1 / 2} \sum_{k}^{\prime} e^{-i k x} c_{k \eta}
\end{aligned}
$$

Impose anti-periodic boundary conditions:
(convenient to avoid degeneracy of Fermi ground state)

$$
\psi_{\eta}(-L / 2)=\psi_{\eta}(L / 2) \Rightarrow k=\underbrace{\frac{2 \pi}{L}}_{\Delta_{L}}\left(n-\frac{1}{2}\right)
$$

(2)

Anticommutators: $\quad\left\{c_{k \eta}, c_{k^{\prime} \eta^{\prime}}\right\}=0, \quad\left\{c_{k \eta}, c_{k_{\eta}^{\prime}}^{+}\right\}=\delta_{k k^{\prime}} \delta_{\eta \eta^{\prime}}$

$$
\begin{align*}
& \left\{\psi_{\eta}(x), \psi_{q}\left(x^{\prime}\right)\right\}=0 \tag{2}\\
& \left\{\psi_{\eta}(x), \psi_{\eta^{\prime}}^{+}\left(x^{\prime}\right)\right\}^{(8.1)}=\Delta_{L} \sum_{k k^{\prime}}^{\prime} \sum_{\eta \eta^{\prime}} e^{-i x k} e^{+i x^{\prime} k^{\prime}} \overbrace{\left.c_{k \eta}, c_{k \eta^{\prime}}\right\}}^{\delta_{k k^{\prime}} \delta_{\eta \eta^{\prime}}} \\
& \underset{L \rightarrow \infty}{ } \delta_{\eta \eta^{\prime}} \underbrace{\Delta_{L} \sum_{k}}_{\int_{d k}} e^{-i k\left(x-x^{\prime}\right)} e^{-|k| a} \\
& \text { Continuum limit: } \\
& \text { (finite bandwidth) } \\
& \text { (4) }
\end{align*}
$$

smeared delta-function
(6)
 antiperiodic delta-function

Linearized kinetic energy:

$$
H^{(6.2)}=\sum_{k \eta}^{\prime} v_{F} k c_{k \eta}^{+} c_{k \eta}
$$

Fermi ground state: $\left\{\begin{array}{lll}k<0 \text { filled: } & C_{k \eta}^{\dagger}|0\rangle=0 \\ k>0 \text { empty: } & C_{k \eta}|0\rangle=0\end{array}\right.$

Imaginary-time evolution:

$$
\begin{align*}
c_{k \eta}(\tau): & =e^{H \tau / \hbar} c_{k \eta} e^{-H \tau / \hbar} \tag{3}\\
& =e^{-(\underbrace{}_{\equiv 1} \underbrace{}_{\equiv 1}) k \tau} c_{k \eta}=e^{-k \tau} c_{k \eta} \tag{4}
\end{align*}
$$

$\left[\begin{array}{l}\text { If we ever need real- } \\ \text { time evolution: }\end{array}\right.$

$$
c_{k}(t)=c_{k}(\tau \rightarrow i t)=e^{-i k t} c_{k}
$$

(5) $]$

Fermion field: $\psi_{\eta}(\tau, x)=\Delta_{L}^{1 / 2} \sum_{k}^{\prime} e^{-k(\underbrace{(i x+\tau)}_{=: z}} c_{k \eta}=\Delta_{L}^{1 / 2} \sum_{k} e^{-k z} c_{k \eta}=\psi(z) \quad(6)$

$$
\begin{align*}
& -S_{\mu i}(\partial)=\left\langle\tau \Psi_{i}^{(2)} \psi_{i}^{\prime}(0)\right\rangle \\
& =\theta(\tau)\left\langle\psi_{1}^{(s)} \psi_{i}^{\prime}(\theta)\right\rangle-\theta(-\tau)\left\langle\psi_{1}^{\dagger}(\theta) \psi_{1}^{(\tau)}\right\rangle \tag{2}\\
& =\Delta_{L} \sum_{k k^{\prime}}^{\prime} e^{-k z}[\theta(\tau)\langle 0| \underbrace{\langle\theta(-\tau)}_{\delta_{k k^{\prime}} \delta_{\eta \eta^{\prime}} c_{k \eta^{\prime}} c_{k^{\prime}}{ }^{\prime} \mid 0\left(k^{\prime}\right)}\langle 0| \underbrace{+}_{\delta_{k^{\prime} k} \delta_{\eta^{\prime} \eta} c^{\prime} \theta(-k)} \tag{3}\\
& =\delta_{\eta \eta^{\prime}}^{\Delta_{c} \sum_{k>0}^{\infty} e^{-k z \sigma} e^{-k a} \cdot \sigma \quad[\sigma=\operatorname{sign}(\tau)]} \tag{4}\\
& \xrightarrow{L \rightarrow \infty} S_{\eta \eta^{\prime}} \sigma\left(\frac{e^{-z \sigma-a}}{-z \sigma-a}\right]_{0}^{\infty}=\delta_{\eta \eta^{\prime}} \frac{1}{z+\sigma a} \quad \begin{array}{l}
\text { a regularizes } \\
\text { the correlator } \\
\text { for } z=0
\end{array}
\end{align*}
$$

For finite L one finds, using $\quad k=\Delta_{L}(n+1 / 2), y:=e^{-\Delta_{L}(\sigma z+a) \text { : }}$
$-S_{i \eta}(z)=\Delta_{L} \sigma y^{-\sigma / 2} \sum_{n=0}^{\infty} y^{n}=\Delta_{L} \sigma \frac{y^{-(\sigma+1) / 2}}{y^{-1 / 2}-y^{1 / 2}}=\frac{\delta_{\eta \eta^{\prime}} e^{\pi(\sigma+1) / L}}{\frac{L}{\pi} \sinh \left[\frac{\pi}{L}(z+\sigma a)\right]}$ (b)

I. 4 Fermion normal ordering

$A, B, c \in\left\{c_{k \eta}, c^{+} k^{\prime} \eta\right\}$

To bring "normal order" a product of operators, move all operators that annihilate the vacuum to the right of all others, and multiply by (-1) for each exchange of two fermion operators.

For product of two operators, this is equivalent to:

$$
\begin{equation*}
{\underset{x}{x}}_{x} A B \underset{x}{x}=A B-\langle 0| A B|0\rangle \tag{3}
\end{equation*}
$$

Example: $k<0, k^{\prime}<0: \quad{ }_{x}^{x} C_{k}^{+} C_{k}^{\prime} \underset{x}{x}=-C_{k^{\prime}} C_{k}^{+}$

$$
\begin{equation*}
\stackrel{\text { (9.1) }}{=} c_{k}^{+} c_{k}^{\prime}-\underbrace{\delta_{k k^{\prime}}}_{\left\langle c_{k}^{+} c_{k^{\prime}}\right\rangle}=(1) \tag{4}
\end{equation*}
$$

By definition, vacuum expectation value of two normal ordered operators vanishes:
(2 pi) density:

$$
\begin{align*}
\rho_{\eta}^{(x)} & ={ }_{x}^{x} \psi_{\eta}^{t}(x) \psi_{\eta}(x) \times x \tag{1}\\
& =\Delta_{L} \sum_{\sum_{k q}^{\prime}}^{\prime} e^{i(q-q-k) x} \overbrace{\sum_{k}^{x} x_{x}^{t} c_{k-q \eta} c_{k \eta} x_{x}^{x}}^{\text {bilenear, hence }} \tag{2}
\end{align*}
$$

Fourier representation:
i.t.o. density modes:
where we defined:

$$
\begin{equation*}
=\Delta_{L} \hat{N}_{\eta}+\Delta_{L} \sum_{q>0} i \sqrt{n_{q}}\left(e^{-i q x} b_{q \eta}-e^{i q x} b_{q}^{\dagger}\right) \tag{3}
\end{equation*}
$$

Particle number relative to Fermi ground state:
$\hat{N}_{\eta}=\sum_{k}{ }_{x}^{x} C_{k \eta}^{t} C_{k \eta} \stackrel{x}{x}$
(4) $[$ the $q=0$ term of (2)]

Momentum lowering op:
(Bosonic annihilation op)

Momentum raising op:
(Bosonic creation op)

$$
\begin{equation*}
b_{q \eta}=\frac{-i}{\sqrt{n_{q}}} \sum_{k} c_{k-q, \eta}^{+} c_{k \eta} \tag{s}
\end{equation*}
$$

Note: (5) and (6) are automatically normal ordered, hence no need to write $\quad \begin{aligned} & x \\ & x\end{aligned}$

$$
\begin{align*}
& {[A, B C]_{-}=[A, B]_{\bar{F}} C \pm B[A, C]_{F}} \\
& {\left[a^{+} b, c^{+} d\right]_{-}=\left[a^{+} b, c^{+}\right]_{-} d+c^{+}\left[a^{+} b, d\right]_{-}=a^{+} d \delta_{b c}-c^{+} b \delta_{a d}} \tag{2}
\end{align*}
$$

Bosonic commutation relations: (for notational simplicity, below we drop the index η)

$$
\begin{equation*}
\left[N, b_{q}\right]=-\frac{i}{\sqrt{n q} \sum_{k k^{\prime}}}\left[c_{k}^{t} c_{k}, c_{k^{\prime}-q}^{t} c_{k^{\prime}}\right] \tag{3}
\end{equation*}
$$

momentum-lowering operator does not change particle number

$$
\text { shift: } k \rightarrow k+q
$$

Similarly:

$$
\begin{align*}
& \stackrel{(2)}{=}-\frac{i}{\sqrt{n q}} \sum_{k k^{\prime}}\left(C_{k}^{t} C_{k}^{\prime} \delta_{k, k^{\prime}-q}-C_{k^{\prime}-q}^{c_{k} C_{k}} \delta_{k k^{\prime}}\right) \\
& =-\frac{-i}{\sqrt{n q}} \sum_{k}\left(c_{k}^{t} c_{k+q}-c^{t} k_{-q} c_{k}\right)=0
\end{align*}
$$

$$
\begin{equation*}
\left[N, b_{q}^{t}\right]=0, \quad\left[b{ }_{q}, b_{q^{\prime}}^{\prime}\right]=0, \quad\left[b_{q}^{t}, b^{t}\right]=0 \tag{6}
\end{equation*}
$$

$$
\begin{align*}
\delta_{q q^{\prime}}=\left[b_{q,} b_{q^{\prime}}^{+}\right] & =\frac{1}{n_{q}} \sum_{k k^{\prime}}\left[c_{k-q}^{+} c_{k}, c_{k^{\prime}+q^{\prime}}^{+} c_{k^{\prime}}\right] \tag{I}\\
& =\frac{1}{n_{q}} \sum_{k k^{\prime}}\left[c_{k-q}^{t} c_{k^{\prime}} \delta_{k, k^{\prime}+q^{\prime}}-c_{k^{\prime}+q^{\prime}}^{+} c_{k} \delta_{k-q, k^{\prime}}\right] \tag{2}\\
& =\frac{1}{n_{q}} \sum_{k}\left[c^{t} k-q^{+} c_{k-q^{\prime} d}^{c_{\text {cancel }}-c_{\text {if } q \neq q^{\prime}}^{t}}, ~\right. \tag{3}
\end{align*}
$$

if $\quad q \neq q^{\prime}$, both terms are normal-ordered, so we can set $\quad k+q^{\prime} \rightarrow k$ here, obtaining 0 . if $\quad q=q^{\prime}$, both terms have to be normal-ordered first, before rearranging sum; this gives:

6. Properties of Id Boson fields
"annihilation field":

(1)
"creation field":

The ultraviolet cutoff or here acts as a bandwidth for bosonic excitations. In fermion language, it sets the maximum momentum difference between particle/hole pairs.

Hermitian boson field:

Derivative gives density: (provided $a=0$)

$$
\begin{equation*}
\partial_{x} \phi_{q}(k)=\Delta_{L} \sum_{q} i \sqrt{n_{q}}\left(e^{-i q x} b_{q \eta}-e^{i q x} b_{q q}^{t}\right) \tag{4}
\end{equation*}
$$

Compare (16.4) \& (13.3):

$$
\begin{equation*}
\rho_{1}^{(A)}=\left\{y_{i}^{\left.f(m) \psi_{l}^{(t)}\right\}}=\Delta_{L} N_{q}+a_{x} \phi_{l}\right. \tag{5}
\end{equation*}
$$

Note: this commutator needs both infrared and ultraviolet regulators, $1 / \mathrm{L}$ and a, respectively!

Commutator of phi with its derivative

$$
\begin{equation*}
\left[\phi(x), \partial_{x^{\prime}} \phi\left(x^{\prime}\right)\right]=\left[\varphi(x), \partial_{x^{\prime}} \varphi^{\not t}\left(x^{\prime}\right)\right]+\left[\varphi^{\not}(x), \partial_{x^{\prime}} \varphi\left(x^{\prime}\right)\right] \tag{1}
\end{equation*}
$$

$\left[\varphi(x), \varphi^{+}(x)\right]^{(17.4)}=-\ln (1-y)$
$y=e^{-i \Delta_{l}\left(x-x^{\prime}-i a\right)}$

$$
\frac{1}{e^{\Delta}-1}
$$

$$
\begin{equation*}
\xrightarrow[\text { detain } 1 / L \text { term }]{L \rightarrow \infty} i \Delta / L\left[\frac{1}{i \Delta \chi_{L}\left(x-x^{\prime}-i a\right)}-\frac{1}{2}\right] \text {-c.c. } \tag{3}
\end{equation*}
$$

$$
=\frac{1}{\Delta}(1-\Delta / 2+\ldots)
$$

$$
=\frac{1}{\Delta}-\frac{1}{2}
$$

$$
\left[\begin{array}{c}
\int_{-L / 2}^{L / 2} d x^{\prime}\left[\phi(x), \partial_{x^{\prime}} \phi\left(x^{\prime}\right)\right] \stackrel{(4)}{=} 2 \pi i\left(1^{t^{\prime}}-1^{6^{\prime}}\right]^{\prime}=0 \tag{19}\\
=[\phi(x), \underbrace{\phi(L / 2)-\phi(-L / 2)}_{=0}]
\end{array}\right.
$$

$$
\begin{align*}
& {\left[b{ }^{(14.6)}\right.} \\
& {\left[b_{q}, b_{q^{\prime}}\right]=\left[b_{q}^{+}, b_{q^{\prime}}^{+}\right]=0 \Rightarrow\left[\varphi(x), \varphi\left(x^{\prime}\right)\right]=0,\left[\varphi^{+}(x), \varphi^{+}\left(x^{\prime}\right)\right]=0,} \\
& \left[b q, b_{q^{\prime}}^{+}\right]=\delta q q^{\prime} \Rightarrow\left[\varphi(x), \varphi^{t}\left(x^{\prime}\right)\right]=\sum_{q q^{\prime}}^{\prime} \frac{1}{u_{q}} \frac{1}{\sqrt{u_{q}}} e^{-i q x} e^{i q^{\prime} x^{\prime}} \underbrace{\left[b q, b_{q^{\prime}}\right.}_{\delta q q^{\prime}}] \tag{2}\\
& q=\Delta_{L} n \tag{3}\\
& y=e^{-i \Delta_{L}(x-x r-i a)} \\
& =\sum_{q>0} \frac{1}{n_{q}} e^{-i q\left(x-x^{\prime}\right)} e^{-a q} \\
& =\sum_{n=1}^{\infty} \frac{1}{n} y^{n}=-\ln (1-y) \tag{4}\\
& \xrightarrow{L \rightarrow \infty} 1-i \Delta_{L}\left(x-x^{\prime}-i a\right)
\end{align*}
$$

$[\phi(x), \phi(x)]=\int_{d x}^{x^{x}}\left[\phi(x), \partial_{x} \phi(x)\right]$
$+$
$C \curvearrowright\left\{\begin{array}{l}\text { fixed by requiring } \\ \text { commutator to } \\ \text { vanish for } x=x^{\prime}\end{array}\right.$

$$
\begin{aligned}
& \text { (18.4) } \\
& =2 i \int d \bar{x}\left[\frac{a}{(x-\bar{x})^{2}+a^{2}}-\frac{\pi}{L}\right] \\
& =-2 i\left[\arctan \left(\frac{x-x^{\prime}}{a}\right)-\frac{\pi\left(x-x^{\prime}\right)}{L}\right]
\end{aligned} \text { (3) } \begin{aligned}
& \text { (2) } \\
& =-i \pi \varepsilon_{a}\left(x-x^{\prime}\right) \quad \text { where } \\
& \text { (4) }
\end{aligned}
$$

(4) is the form most often quoted, with $a=0, L=$ infinity.

