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In 1D, "bosonization 

relations" of the 

following form hold:

Goal of lectures:

- explain origin of these relations

- illustrate them with some canonical examples
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Outline:

I.      1D-fermions, 1D-bosons

II.    Bosonization identity

III.  Impurity in Luttinger Liquid

IV.    Kondo model
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Popular applications

1. Interactions in 1D

Since fermions in 1D cannot pass each other, interactions are "strong" and dramatically 

change the physics (e.g. spin-charge separation)

Applications:

nanotubes

organic molecules

semiconductor quantum wires quantum Hall edge states

Interactions in 1D:

Kinetic energy:

Interacting model becomes exactly solvable!

(pioneered by: Luttinger, Schotte & Schotte, Mattis &Lieb, Luther & Peschel, Haldane

 applications: Kane & Fisher, Wen, Shankar...)



2. Impurity models (Kondo):

Spin-flip term:

Bosonize:

New boson field:

Refermionize:

(Emery & Kivelson, '92)

Heuristic plausibility argument for bosonization relation

How can it be true that:

For 1-D bosons, with 

linear dispersion:

For 1-D fermions, with 

linear dispersion:

or, using (1):

standard identity for 

bosonic operators:

using (2):



Questions:

How general is (5.1) ?

Does (5.1) rely on linear dispersion?

Is (5.1) an operator identity?

Commutation relations?

Several species

of electrons?

On what Fock space ?

Outline of lecture I: 1-D fermions & bosons

1.  Linearization of fermion spectrum

2.  Properties of 1d fermion fields 

3.  1D fermion correlators

Role of cut-offs ? Infrared: Ultraviolet:

Finite-size effects?

4.  Normal ordering

5.   Density fluctuations - bosonic excitations

6.   Properties of 1d boso

I.1 Linearization of fermion spectrum

Neglected terms [order (k/kF)] describe curvature effects: current research topic!

Fermi-Luttinger liquid: Spectral function of interacting one-dimensional fermions, Khodas, Pustilnik, Kamenev, Glazman, PRB, 76, 155402 (2007)

curvature-effect

     replace/

approximate by

linearization is justified:

add positron states with 

for L/R-branches

(ignore spin)



Replacing (6.1) by (6.2) is justified if we are interested only in long-wavelength / low/energy

properties, with anyway, i.e. in excitation energies 

In this case, we may as well send cutoff and replace theory  

Corresponding approximation for electron fields, step by step:

Drop high-energy excitations, assuming they

don't matter for low-energy properties:

Step 1: drop B

Cutoff means: new fields can resolve 

spatial structures only if they are coarser than 

Step 2:  to get a mathematically simpler, cleaner theory, 

now take cutoff to infinity, i.e. add "positron states"  

(since they did not matter for low excitation energies anyway):

So, write:

Impose anti-periodic

boundary conditions:
(convenient to avoid degeneracy 

of Fermi ground state)

(x is smeared on scale a)

I.2 Properties of 1d fermion fields



Anticommutators:

Continuum limit:

(finite bandwidth)

convention of vDS
smeared delta-function

Or:

infinite bandwidth

antiperiodic delta-function

Linearized kinetic energy:

Imaginary-time 

evolution:

Fermion field:

If we ever need real-

time evolution:

Fermi ground state:



I.3 Imaginary-time-ordered fermion correlator at T = 0

For finite L one finds, using

a regularizes 

the correlator 

for z = 0

I.4 Fermion normal ordering

To bring "normal order" a product of operators, 

move all operators that annihilate the vacuum to the right of all others, 

and multiply by (-1) for each exchange of two fermion operators.

Example:

By definition, vacuum 

expectation value of two 

normal ordered operators 

vanishes:

For product of two operators, 

this is equivalent to:



(2 pi)  density:

Fourier representation:

i.t.o. density modes:

I.5 Density fluctuations - bosonic excitations

where we defined:                                           

Particle number relative 

to Fermi ground state:
[the q = 0 term of (2)]

Momentum raising op:

(Bosonic creation op)

Momentum lowering op:

(Bosonic annihilation op)

bilenear, hence bosonic in character!

Note: (5) and (6) are automatically normal ordered, hence no need to write 

Bosonic commutation relations:

Similarly:

momentum-lowering 

operator does not change 

particle number

(for notational simplicity, below we drop the index       )



if            , both terms are normal-ordered, so we can set here, obtaining 

if     , both terms have to be normal-ordered first, before rearranging sum; this gives:

cancel after shift in first term:

number of possible transitions

generated by 

6. Properties of 1d Boson fields

 "annihilation field":

"creation field":

Hermitian boson field:

The ultraviolet cutoff a here acts as a bandwidth for bosonic excitations. 

In fermion language, it sets the maximum momentum difference between particle/hole pairs. 

Derivative gives density:
(provided a = 0)

Compare (16.4) & 

(13.3):



Boson field commutators: (for notational simplicity, below we drop the index       )

Note: this commutator needs both infrared and ultraviolet regulators, 1/L and a, respectively!

Commutator of phi with its derivative

The 1/L term ensures consistency upon integrating (1):

since phi is periodic, (16.1, 16.2)

(but retain 1/L term)



Commutator of phi with itself [can be obtained by integrating (18.1)]

fixed by requiring 

commutator to 

vanish for x = x'

where

smeared step function

(4) is the form most often quoted, with a = 0, L = infinity.


