
TMP-TC2: Cosmology

Problem Set 6 30, 31 May & 1 June 2023

1. Boltzmann equation

To study the evolution of the Universe we need to describe the dynamics of many
interacting particles beyond thermal equilibrium. The study of these situations goes
under the name of kinetic theory. In this exercise, we obtain and study the main ins-
trument to address the problem, namely the Boltzmann equation. In kinetic theory,
we approximate the state of our many-particle system by a time-dependent phase
space number density function f(x,p, t), which represents the particle number den-
sity at position x with momentum p at a particular instant in time t.

In the first part, we ignore collisions between particles.

1. First assume a non-relativistic Hamiltonian, without interactions but in an
external force field F (x,p, t). Derive the equation of motion for f by imposing
that the total derivative df

dt
is zero in phase space.

2. Now we generalize the equation of motion to general relativistic conditions.
Since we are in a cosmological setting, let’s assume homogeneity and isotropy
so that f doesn’t depend on x.
Show that in a FLRW spacetime ∂f

∂t
satisfies the equation

∂f

∂t
−Hp∂f

∂p
= 0 (1)

For that, impose that the total derivative of f vanishes and use the redshift
of momenta.

3. Starting from f(x,p, t), how do we obtain the space density n(x, t) ? In our
setting when n(x, t) = n(t) by homogeneity, derive a differential equation for
the time evolution n(t).

4. Show that the equation you obtained is equivalent to the conservation equa-
tion

1

a3

d

dt
(a3n(t)) = 0 (2)

Now we want to introduce interactions between our particles. If our degrees of free-
dom are weakly interacting, 2 → 2 scattering is dominant. Imagine a scattering
process of the form

(1)p + (2)q ←→ (3)p′ + (4)q′ (3)

We imagine our interactions are fast enough with respect to the variation of fi so
that they instantaneously transfer some density from the region of momenta p, q to
regions of momenta p′, q′ and vice versa at the same position of space x.

As a first step in analyzing collisions, we imagine an idealized setting where we have
a homogeneous number density in space, with particles all moving around a typical



energy. This is relevant for nearly thermal conditions like the ones of the early uni-
verse since we can imagine particles with kinetic energy peaked around E ∼ T .
Observe that this doesn’t mean they’re in complete thermal equilibrium, since, for
example, chemical potentials may differ.

In these conditions, we estimate the variation of n1 as caused by a collision term :

1

a3

d

dt
(a3n1) = − Γ

V
(1 + 2→ 3 + 4) +

Γ

V
(3 + 4→ 1 + 2) (4)

where Γ
V

is the scattering rate per unit volume to be expressed as a function of
energy T and particle densities ni.

5. Show that Γ
V

(1 + 2 → 3 + 4) can be calculated in term of the cross section
as Γ

V
(1 + 2 → 3 + 4) = 〈σv〉Tn1n2. v denotes the relative velocity between

scatterers.

6. Finally, we obtain the equation

1

a3

d

dt
(a3n1) = 〈σv〉T (n3n4 − n1n2) (5)

Under the previous assumption that the particles are in kinetic equilibrium
(same temperature) but not necessarily in chemical equilibrium (different
chemical potential) describe what happens for H � Γ and H � Γ.

If we want to understand the Boltzmann equation in a more general setting, we
can consider collisions for arbitrary phase space density distributions fi. Then, the
process causes a variation of n1(t) (we suppressed x) given by

1

a3

d

dt
(a3n1) =

∫
d3p

(2π)32E2(p)

∫
d3q

(2π)32E2(q)

∫
d3p′

(2π)32E3 (p′)

∫
d3q′

(2π)32E4 (q′)
|M|2

× (2π)4δ
(3)
D [p + q − p′ − q′] δ

(1)
D [E1(p) + E2(q)− E3 (p′)− E4 (q′)]

× {f3 (p′) f4 (q′)− f1(p)f2(q)} .
(6)

The right-hand side takes the name of the collision integral.

7. Justify the above expression.

Indication: Recall the expression of the relativistic scattering rate per unit
volume from QFT :

dRβα =
2∏
i=1

d3pi
(2π)32Epi

n′∏
j=1

d3p′j
(2π)32Epj

(2π)4δ(4) (pβ − pα) |Mβα|2 (7)

We add without proving that the boson/fermion statistics change the factor f3 (p′) f4 (q′)−
f1(p)f2(q) to

f3 (p′) f4 (q′) [1± f1(p)] [1± f2(q)]

− f1(p)f2(q) [1± f3 (p′)] [1± f4 (q′)]
(8)



These factors can be interpreted as an enhancement coming from Bose condensation
for bosons or a suppression by the Pauli exclusion principle for fermions.

If we approximate the previous integral assuming kinetic equilibrium, i.e. same tem-
perature but possibly different chemical potential, we can then average the cross-
section over the thermal distribution and reduce ourselves back to the easier previous
form.

2. Conservation of chemical potential

In this exercise we expand on the last point of the previous exercise. We saw that
the Boltzmann equation has the structure of the balance equation, whose right-hand
side (the collision integral I) measures the difference between gain and loss processes
in a given cell of the phase space. In equilibrium, these processes must balance each
other, hence Ieq = 0.

1. Prove that in equilibrium the chemical potential µ is preserved by reactions
of the form (1) + (2)→ (3) + (4), that is, µ1 + µ2 = µ3 + µ4.

2. Bearing in mind the conservation of chemical potential in equilibrium sys-
tems, show that µγ = 0.

3. Show that the chemical potentials of particle (p) and antiparticle (p̄) are
related by µp = −µp̄.

3. Abundances evolution

The density of decaying particles X(X → qq), obeys the equation

dnX
dt

+ 3HnX = −ΓX(nX − neq) ,

where the term ΓXneq comes from inverse process (qq → X), and neq is the equili-
brium density of X.
Assuming that ΓX = αm with m the mass of the particle, what value of α should
be chosen in order to get non-equilibrium behaviour ?
To answer this question, effectuate the following steps :

1. To get rid of the friction term 3HnX , we introduce the quantity Y = nX/nγ,
where the photon density nγ obeys a collisionless Boltzmann equation . In
addition, it can sometimes be useful to introduce the dimensionless variable
x = m/T .

2. Deduce from the equation for nX , a differential equation for Y (x).

3. Solve the problem numerically with the initial condition Y (T → ∞) =
Yeq(T ). Indication: Distinguish the cases T � m and T � m.


