
TMP-TC2: Cosmology

Solutions to Problem Set 4 16, 17, 18 May 2023

1. Comoving Distance and Redshift

1. From Problem Set 2 we know that

χ = arsinh r for k = −1

χ = r for k = 0

χ = arcsin r for k = +1

2. Photons follow null geodesics and thus

ds2 = 0 = dt2 −R(t)2dχ2 (1)

From here we obtain

χ =

∫ t2

t1

dt

R(t)
(2)

3. The redshift is defined as

1 + z =
λ2

λ1

, (3)

with λ1 and λ2 the wavelengths at the time of emission and observation,
respectively. The wavelengths increase due to the expansion of the Universe

λ ∝ R , (4)

meaning that

1 + z =
R(t2)

R(t1)
.

4. We start from the definition of the Hubble parameter

H =
Ṙ

R
=

1

R

dR

dt
=

1

R

dR

dz

dz

dt
.

Using 1 + z = R0

R
, the above becomes

H = − 1

dt

dz

(1 + z)
.

Therefore, for the age of the universe we find

t =

∫ t

0

dt =

∫ ∞
z

dz′

(1 + z′)H
(5)
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5. For a matter dominated universe we have R ∝ t
2
3 . Therefore, the Hubble

constant H ∝ R−
3
2 and we obtain

H

H0

=

(
R0

R

) 3
2

= (1 + z)
3
2 (6)

The age of the universe is given by t(z = 0). Hence, the time ∆t that was
passed since emission is

∆t = t(z = 0)− t(z)

=

∫ z

0

dz′

(1 + z′)
5
2H0

=
1

H0

(
−2

3

1

(1 + z)
3
2

+
2

3

)
Inserting the numbers gives ∆t ≈ 2.28 · 1017s ≈ 7.23 billion years. The dis-
tance at the time of emission is

d = R(tem)χ

= 3t
2
3
em(t

1
3
0 − t

1
3
em)

= 3(t0 −∆t)
2
3 (t

1
3
0 − (t0 −∆t)

1
3 )

With t0 = 2
3H0

we obtain

d ≈ 1.19 · 1017s · c
≈ 3.57 · 1022 km

≈ 3.77 billion light years

2. Evolution of the Universe

1. Recall that

ΩΛ =
ρΛ

ρc
, ρΛ =

λ

8πG
, ρc =

3H2
0

8πG
. (7)

We also know that 1Mpc = 3.1 · 1024cm. In natural units,

1cm = 5 · 1013GeV −1, G = M−2
P , MP = 1.2 · 1019GeV. (8)

Assuming ΩΛ = 0.7 and H0 = 73
km

s ·Mpc
, we have

ρc ≈ 0.5 · 10−5GeV

cm3
. (9)

Hence

ρΛ ≈ 0.35 · 10−5GeV

cm3
, (10)

and

λ =
8πρΛ

M2
P

≈ 5 · 10−84GeV 2. (11)
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2. The present radiation density is :

ρ =
π2

30
gT 4 =

π2

30
g
T 4k4

B

~3c5
= 4.7 · 10−31[kg/m3].

The critical density (H = 70 km
s Mpc

) is

ρc =
3H2

8πG
= 9.2 · 10−27[kg/m3],

and then
Ωγ =

ργ
ρc

= 5 · 10−5.

It is a flat space, Ωm + Ωλ = 1, Ωγ ∼ 0.

3. We solve the Friedmann equations now, returning in time (t0 is the current
age of the universe). According to the approximation proposed, we take into
account only λ, and the evolution of the universe is given by

R(t) = R0e
√

λ
3

(t−t0),

until the matter domination. Indeed, if the universe becomes smaller, matter
concentrates (ρm ∝ R−3) while the cosmological constant does not change 1.
The point (tλ, Rλ = R(tλ)) where the densities are equal

Ωλ(t0) = Ωλ(tλ) = Ωm(tλ) = Ωm(t0)
R3

0

R3
λ

,

is for
Rλ

R0

=

(
Ωm(t0)

Ωλ(t0)

)1/3

= e
√

λ
3

(tλ−t0).

Then

tλ − t0 = (3λ)−1/2 ln
Ωm

Ωλ

.

By using λ = 3ΩλH
2 = 1.1·10−35, we find tλ−t0 = −4.58·109 years. We check

at this time that ργ � ρm, in fact, ργ(tλ) = ργ(t0)(R0/Rλ)
4 = 3.1ργ(t0). The

evolution of the universe dominated by the mater is

R(t) = R0

(
t

t0

)2/3

.

Since ργ ∼ R−4 and ρm ∝ R−3 the radiation had dominated for tm, Rm very
small. The transition is when

Ωm(tm) = Ωγ(tm)

1. The energy density ρΛ of the cosmological constant is constant. In the phase where the
universe is dominated by the cosmological constant the critical density is also constant, and also
the abundance ΩΛ.
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As we just mentioned

Ωm(tm) = Ωm(tλ)
R3
λ

R3
m

et Ωγ(tm) = Ωγ(tλ)
R4
λ

R4
m

.

Since R ∼ t2/3, we get

Ωm(tλ)

Ωγ(tλ)
=
Rλ

Rm

=
t
2/3
λ

t
2/3
m

.

We can write the L.H.S. as

Ωm(tλ)

Ωγ(tλ)
=

Ωm(t0)

Ωγ(t0)

Rλ

R0

=
Ωm(t0)

Ωγ(t0)

(
Ωm(t0)

Ωλ(t0)

)1/3

,

then tm = 3.3 · 10−6tλ. Earlier, the universe was dominated by radiation

R(t) = Rm(t/tm)1/2.

In conclusion, we have tλ = 9.52 · 109 y, tm = 31′000 y. The present age of
the universe is t0 ' 14 ·109y. The matter had dominated until “recently” and
almost from the beginning.

 

3. Dipole anisotropy of the Cosmic Microwave Background

We want to show how the motion of the Earth inside the CMB gives rise to anisotropy
in the temperature spectrum. To this end, it is useful to work with Lorentz invariant
quantities. A Lorentz scalar is for example the total number of photons, given by

N =

∫
d3p d3x f(ω, T ) (12)

where f(ω, T ) is the photon number density in phase-space, given by

f(ω, T ) =
1

e
ω
kT − 1

(13)

Since N and d3pd3x are Lorentz scalars, the number density f(ω, T ) must also be a
Lorentz scalar.
If we move to a coordinate system that is moving with respect to the CMB

ωCMB =
1 + v cos θ√

1− v2
ωOBS , (14)
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where θ is the angle betweenthe direction of observation and Earth’s velocity. For
f(ω, T ) to be invariant, the temperature must transform as

TOBS =

√
1− v2

1 + v cos θ
TCMB . (15)

Expanding the above in powers of v and keeping the first order term, we find

TOBS ≈ (1− v cos θ)TCMB → δT

T
≈ −v cos θ . (16)

Considering a dipole anisotropy of the order of 10−3, we find for θ = π

v ≈ 10−3 , (17)

or, in conventional units,
v ≈ 370 km/s . (18)

4. Photon decoupling in numbers

1. The redshift is defined as

1 + z(t) =
R0

R(t)
, (19)

where R0 = R(t0) is the scale factor today. Since temperature redshifts as
T ∼ R−1, we find that at the time of decoupling

z(td) =
Td
T0

− 1 ≈ 1100 . (20)

2. In order to compute the age of the Universe

t =

∫
dt ,

when photons decoupled, we have to express the above in terms of the red-
shift. Time and redshift are related as

t =

∫
dz

(1 + z)H
.

We have seen that

H2 = H2
0

[
Ωλ + (1 + z)3Ωm + (1 + z)4Ωγ

]
.

Using this, the time of decoupling is obtained as

td =
1

H0

∫ zd

0

dz′

(1 + z′)
√

Ωλ + Ωm(1 + z′)3 + Ωγ(1 + z′)4
≈ 3.75× 105 years .

(21)

3. For the abundances we have

Ωλ(zd) = Ωλ(z0), Ωm(zd) = Ωm(z0)(1 + zd)
3, Ωγ(zd) = Ωγ(z0)(1 + zd)

4 ,
(22)

since λ is constant, whereas matter m and radiation γ redshfit as R−3 and
R−4 respectively.
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