TMP-TC2: COSMOLOGY

Problem Set 2

1. Friedmann-Lemaître-Robertson-Walker (FLRW) metric in other coordinate systems

Show that the following line elements correspond to homogeneous and isotropic space with constant spatial curvature :

$$
\begin{aligned}
& d s^{2}=d t^{2}-R(t)^{2}\left(d \chi^{2}+\sin ^{2} \chi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right) \\
& d s^{2}=d t^{2}-R(t)^{2}\left(d \chi^{2}+\chi^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right) \\
& d s^{2}=d t^{2}-R(t)^{2}\left(d \chi^{2}+\sinh ^{2} \chi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right) .
\end{aligned}
$$

2. Energy-momentum tensor of a perfect fluid

Starting from the conservation of the energy-momentum tensor of a perfect fluid in arbitrary coordinate systems, show that for the flat FLRW metric

$$
\begin{equation*}
\frac{d}{d t}\left(\rho R^{3}\right)+p \frac{d}{d t} R^{3}=0 \tag{1}
\end{equation*}
$$

3. Friedmann Equations

Consider a homogeneous and isotropic universe described by the FLRW metric. Assume that the universe is filled with a comoving perfect fluid with energy ρ and pressure p.

1. Starting from the Einstein equation, derive the Friedmann equations

$$
\begin{align*}
& H^{2}+\frac{k}{R^{2}}=\frac{8 \pi G}{3} \rho \tag{2}\\
& \frac{\ddot{R}}{R}=-\frac{4 \pi G}{3}(\rho+3 p) \tag{3}
\end{align*}
$$

with $H=\frac{\dot{R}}{R}$
2. In the previous problem you found that the conservation of the energymomentum tensor of a perfect fluid implies equation (1). Derive the same equation from the Friedmann equations.

4. General equation of state

Consider the Universe filled with matter with the following equation of state

$$
\begin{equation*}
p=w \rho, \quad w=\text { Const } . \tag{4}
\end{equation*}
$$

Assume for simplicity $k=0$.

1. From Eq.(1) determine the dependence $\rho=\rho(R)$.
2. From Friedmann equation find $R(t)$ and $\rho(t)$ for $w>-\frac{1}{3}$. How do they behave at $t \rightarrow 0$?
3. Find which values of w correspond to the accelerating expansion of the Universe (i.e. $\ddot{R}>0$).

5. Einstein Universe

Albert Einstein initially assumed that the universe was static and had a uniform distribution of matter, which led him to introduce the cosmological constant Λ in his field equations :

$$
\begin{equation*}
G_{\mu \nu}-\Lambda g_{\mu \nu}=8 \pi G T_{\mu \nu} \tag{5}
\end{equation*}
$$

1. What modifications occur in the Friedmann equations with the inclusion of the cosmological constant?
2. Now assume the universe to be static and dominated by matter. Find an expression for Λ in terms of the energy density ρ.
3. How does R depends on Λ ? What is the shape of the universe?
4. Assuming the radius of the universe to be $R_{0} \sim 1.38 \times 10^{10}$ l.y., find the matter density ρ and the cosmological constant λ required in maintaining the universe static. Give answers in units MKSA and GeV.
