
TMP-TC2: Cosmology

Solutions to Problem Set 12 11-13 July 2023

1. Rotation curves of galaxies

We start from

v2 =
GM(r)

r
, (1)

where for a spherically symmetric distribution

M(r) = 4π

∫ r

0

dr′r′2ρ(r′) , (2)

with ρ(r) the density, such that the object is only affected by the gravitational pull
of the mass density inside its orbit.

1. We consider first the case where for r < rcore the density is constant, i.e.

ρ(r) ∝ ρ0Θ(r − rcore) ,

with ρ0 constant and Θ(x) is the Heaviside step function. Plugging the above
into eqs. (2) and (1) we find that the circular velocity is

v ∝

{
r , r < rcore

r−1/2 , r > rcore

This corresponds roughly to the expectation curve from visible mass in the
plot.

2. Consider now the possibility that the density obeys inverse power law, i.e.

ρ ∝ r−α , α > 0 .

In this case, eq. (2) gives us

M(r) ∝ r3−α , α < 3 .

Therefore, the circular velocity becomes

v ∝ r1−α/2 .

3. For r ≥ rcore, we want the velocity to be independent of r, which immediately
gives α = 2, whereas we would have expected α = 3 for r > rcore from what
the mass density calculated from the observed luminosity of matter in the
galaxy.
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2. Weakly Interacting Massive Particles (WIMPs)

1. The annihilation of X particles switches off when their lifetime becomes of
the order of the Hubble time,

1

nX ⟨σannv⟩
=

1

H (Tf )
,

where the annihilation cross-section in the non-relativistic regime can be ap-
proximated as

σann =
σ0

v

The number densities in equilibrium at temperature T < MX are

nX = nX̄ = gX

(
MXT

2π

)3/2

e−MX/T

Making use of these equations, we obtain the expression for the freeze-out
temperature Tf ,

1

gXσ0

(
2π

MXTf

)3/2

eMX/Tf =
M∗

P

T 2
f

where we assume that freeze-out occurs at radiation domination and used
M∗

P = MP

1.66g
1/2
∗

. In the non-relativistic limit, one can infer with logarithmic
accuracy

Tf =
MX

log
(

gXMXM∗
P σ0

(2π)3/2

) .
This temperature is smaller than MX by a factor of(

log
gXMXM

∗
Pσ0

(2π)3/2

)−1

.

2. The number density ofX particles at freeze-out nX (tf ) is obtained by making
use of Eq.(1),

nX (tf ) =
T 2
f

M∗
Pσ0

After freeze-out, nX changes solely due to the cosmological expansion, so its
present value is

nX (t0) =

(
a (tf )

a (t0)

)3

nX (tf ) .

We now use entropy conservation in comoving volume and write the above
as
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nX (t0) =

(
s0

s (tf )

)
nX (tf )

where s (tf ) and s0 are entropy densities at freeze-out and today. The present
value of the entropy density is

s0 =
2π2

45

(
2T 3

γ + 6 · 7
8
T 3
ν

)
= 2.8 · 103 cm−3.

Hence, the present number density of X particles is given by

nX (t0) =
s0T

2
f

s (tf )M∗
Pσ0

= 3.8
s0

Tfσ0MP

√
g∗ (tf )

,

where we used

s (tf ) = g∗ (tf ) ·
2π2

45
T 3
f .

3. For the relative mass density of X particles we have

ΩX = 2
MXnX (t0)

ρc
= 7.6

s0 log
(

gxM∗
PMXσ0

(2π)3/2

)
ρcσ0MP

√
g∗ (tf )

With known values of s0 and ρc, we find numerically

ΩX = 3 · 10−10

(
GeV −2

σ0

)
1√

g∗ (tf )
log

(
gXM

∗
PMXσ0

(2π)3/2

)
1

2h2

Clearly, the strongest dependence here is on the parameter σ0. The depen-
dence on the mass MX is logarithmic only, while the effective number of
degrees of freedom g∗ does not dramatically change during the cosmological
evolution at freeze-out epoch.

To estimate the annihilation cross section we set σ0 ∼ M−2
X in the argument

of logarithm in Eq.(14), on dimensional grounds. Setting MX = 100GeV and
g∗ = 100 for the estimate, we obtain the numerical value of the logarithmic
factor,

log
gXM

∗
PMXσ0

(2π)3/2
∼ log

gXM
∗
P

(2π)3/2MX

∼ 30

Since logarithm is a slowly varying function, this estimate is valid for wide
range of masses MX and cross sections σ0. The uncertainty in the parameter√
g∗ (tf ) is also moderate : at T ≳ 100GeV and T ∼ 100MeV we have,

respectively,
√

g∗ (tf ) ∼ 10 and
√
g∗ (tf ) ∼ 3. Thus, formula (14) gives the

following estimate for the annihilation cross section

σ0 ∼
3 · 10−10 · 30GeV −2

(3− 10) · 0.25
= (0.36− 1.2) · 10−8GeV−2 = (1.2− 4) · 10−36 cm2
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Note that this value is comparable to weak interaction cross sections at ener-
gies of order 100GeV , namely σW ∼ α2

W/M2
W ∼ 10−7GeV

−2. The result gives
a cosmological lower bound on the annihilation cross section of hypothetical
heavy stable particles that may be predicted by extensions of the Standard
Model. If the cross section is below the value above, the mass density of these
particles is unacceptably high. The main assumption behind this bound is
that X particles were in equilibrium at some early epoch.

3. Primordial Black Holes as Dark Matter Candidates

1. First of all, they are mostly dark, since light trapped beyond their horizon
could never reach us, and thus we could not detect them by luminosity ob-
servations.

Second of all, they are matter. They have a mass which would create a gravi-
tational pull, explaining the miss match with the rotational curves, and their
density evolves as a−3.

Furthermore, the fact that they should mostly exist in galaxies and could be
the seed to Supermassive Black Holes in the centre of galaxies is consistent
with the observational evidence for the distribution of DM in the Universe.
Moreover, they are nearly collisionless and have non-relativistic speeds, which
is consistent with the fact that DM should not interact much with ordinary
matter.

2. Two mass ranges are still open, 10−16M⊙ ≲ M ≲ 10−10M⊙ and 1014M⊙ ≲
M ≲ 1018M⊙.

3. First, we need check how ΩPBH evolves with respect to the scale factor a(t)
from the time of the black holes formation until today. For a rough estimate,
we will assume that the Universe was radiation dominated from the time of
PBH formation until matter-radiation equality, and matter-dominated from
then until now.

Starting from the equation of state ρ = wp, where w = 1
3
for radiation and

w = 0 for matter. we can solve for the density in terms of the scale factor :

ρ̇ = −3H(ρ+ p) = −3(1 + w)Hρ

=⇒ ρ ∝ a−3(1+w)

From which we have that

ΩPBH ∝

{
a , w = 1

3

0 , w = 0
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Which means that

ΩPBH(teq)

ΩPBH(tF )
=

a(teq)

a(tF )
and

ΩPBH(t0)

ΩPBH(teq)
= 1

Recalling that a(t) ∝ t1/2 during radiation-domination and that ΩPBH(t0) =
ΩPBH ∼ 0.25, we calculate

ΩPBH(tF ) ∼
ΩDM(t0)√

teq
1s)

∼ 10−7

So notice we don’t need to produce a lot of PBHs in the Early Universe for
them to constitute all of DM.

4. We can turn the expression of the lifetime around to give us the mass based
on the total evaporation time

M =

(
tHM

4
P

5120πℏ

) 1
3

. (3)

So the mass of a PBH evaporating today is approximately 1014g. This gives
us the evaporation bound in the figure (in red), such that no PBH of mass
smaller than 1014g could explain any fraction of dark matter today. That is,

M ≳ 1014g .

5. Extending the lifetime in such a way, we have that

M =

(
tHM

6
P

5120πℏ

) 1
5

, (4)

such that the new evaporation bound becomes

M ≳ 5x106g ,

which of course extends the window of opportunity for PBHs as all of DM.
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