TMP-TC2: COSMOLOGY

1. Covariant Derivative

1. Remember that a vector transforms under a coordinate transformation from x^{μ} to \bar{x}^{μ} as

$$
\begin{equation*}
V^{\mu} \mapsto \bar{V}^{\mu}=\frac{\partial \bar{x}^{\mu}}{\partial x^{\nu}} V^{\nu} \tag{1}
\end{equation*}
$$

How does the derivative $\partial_{\mu} V^{\nu}$ transform?
Is $\partial_{\mu} V^{\mu}=0$ a coordinate-independent expression?
2. Take the covariant derivative ∇_{μ} and find how $\nabla_{\mu} V^{\nu}$ transforms.

Is $\nabla_{\mu} V^{\mu}=0$ a coordinate-independent expression?
Hint: Remember that the covariant derivative acts on a vector as

$$
\nabla_{\mu} V^{\nu}=\frac{\partial V^{\nu}}{\partial x^{\mu}}+\Gamma_{\mu \lambda}^{\nu} V^{\lambda}
$$

with $\Gamma_{\mu \lambda}^{\nu}$ the Christoffel symbols.
3. Using the fact that covariant derivatives obey the Leibniz rule, symbolically $\nabla(A B)=(\nabla A) B+A(\nabla B)$, deduce explicit expressions for $\nabla_{\lambda} T^{\mu \nu}, \nabla_{\lambda} T_{\mu \nu}$ and $\nabla_{\lambda} T_{\mu}{ }^{\nu}$.

2. Metric for a 3-sphere and a 4-dimensional hyperboloid

1. Consider a 3 -sphere given by

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}+w^{2}=1 \tag{2}
\end{equation*}
$$

Using this constraint, eliminate the w-coordinate in the following metric for a 4 -dimensional space:

$$
\begin{equation*}
d s^{2}=d x^{2}+d y^{2}+d z^{2}+d w^{2} \tag{3}
\end{equation*}
$$

2. Take the coordinates

$$
\begin{aligned}
x & =\sin \chi \cos \phi \sin \theta \\
y & =\sin \chi \sin \phi \sin \theta \\
z & =\sin \chi \cos \theta \\
w & =\cos \chi
\end{aligned}
$$

and find the metric in this coordinate system.
3. Now consider a hyperboloid given by

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}-w^{2}=-1 \tag{4}
\end{equation*}
$$

Eliminate again the w-coordinate in the following metric for a 4 -dimensional space:

$$
\begin{equation*}
d s^{2}=d x^{2}+d y^{2}+d z^{2}-d w^{2} \tag{5}
\end{equation*}
$$

4. Take the coordinates

$$
\begin{aligned}
x & =\sinh \chi \cos \phi \sin \theta \\
y & =\sinh \chi \sin \phi \sin \theta \\
z & =\sinh \chi \cos \theta \\
w & =\cosh \chi
\end{aligned}
$$

and find the metric in this coordinate system.

3. Friedmann-Lemaître-Robertson-Walker (FLRW) metric

A homogeneous and isotropic universe can be described by the FLRW metric

$$
d s^{2}=-d t^{2}+a^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \varphi^{2}\right]
$$

Note that $k= \pm 1$ or 0 . The above for $k=0$ can also be written as

$$
d s^{2}=-d t^{2}+a^{2}(t)\left[d x^{2}+d y^{2}+d z^{2}\right] .
$$

For $k=0$ and $k \neq 0$, effectuate the following steps:

1) Write $g_{\mu \nu}$ and determine $g^{\mu \nu}$.
2) Derive the geodesic equations for a particle in this space from its action

$$
S=m \int d p g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu} \quad \text { where } \quad \dot{x}^{\mu}=\frac{d}{d p} x^{\mu}
$$

3) Deduce by identification the Christoffel symbols $\Gamma^{\lambda}{ }_{\mu \nu}$ by writing the equation of motion as $\ddot{x}^{\lambda}=-\Gamma^{\lambda}{ }_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}$. Verify some results with the usual formula:

$$
\Gamma^{\lambda}{ }_{\mu \nu}=\frac{1}{2} g^{\kappa \lambda}\left(\partial_{\mu} g_{\nu \kappa}+\partial_{\nu} g_{\mu \kappa}-\partial_{\kappa} g_{\mu \nu}\right) \quad \text { where } \quad \partial_{\mu}=\frac{\partial}{\partial x^{\mu}}
$$

4) Calculate the Riemann tensor using

$$
R_{\nu \rho \sigma}^{\mu}=\partial_{\rho} \Gamma_{\nu \sigma}^{\mu}+\Gamma_{\kappa \rho}^{\mu} \Gamma_{\nu \sigma}^{\kappa}-(\rho \leftrightarrow \sigma)
$$

5) Calculate the Ricci tensor $R_{\mu \nu}$.
6) Determinate the scalar curvature R.
7) Calculate the Einstein tensor $G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R$.

4. Volume in curved spacetime

For the FLRW metric with positive curvature, calculate the volume of the spacetime.
Hint: The volume is given by: $V=\int d^{3} x \sqrt{\gamma}$, with γ the determinant of the spatial part of the metric.

