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Problem 1 Hubbard-Stratonovich decoupling of the Coulomb interaction - part 1

Here we consider electrons in three dimensions with mass m and Coulomb interactions

Ĥint =
1

2

ˆ
d3xd3x′ ρ̂(x)ρ̂(x′)

e2

4πε0|x− x′|
. (1)

The goal is to perform a Hubbard-Stratonovich decoupling and show that the system can be
described by the path integral:

Z =

ˆ
D[ψ∗, ψ, φ] exp

[
−
ˆ β

0

dτ

ˆ
d3x

{
ψ∗
(
∂τ −

1

2m
∇2 + eφ− µ

)
ψ − ε0

2
(∇φ)2

}]
(2)

(2.a) Formulate the path integral for Z starting from Eq. (1).

(2.b) Express the Coulomb interaction in Fourier modes by writing

ρ(x) =

ˆ
d3q

(2π)3
ρq e

iq·x (3)

and calculating V (q).

(2.c) Add the auxiliary white-noise variable φq = iφ̃q – integrated over the imaginary axis, i.e.´∞
−∞ dφ̃q in the path integral – with the contribution to the action:

Zφ =

ˆ
D[φ] exp

[
−
ˆ β

0

dτ

ˆ
d3q

(2π)3

{
−1

2
ε0q

2φqφ−q

}]
(4)

Show that Zφ is convergent.

(2.d) Before we apply the Hubbard-Stratonovich decoupling, consider a general repulsive interaction

Hint = g
2

∑
j A

2
j with g > 0 and show that it can be replaced by

∑
j

(
ϕjAj −

ϕ2
j

2g

)
when

adding the Hubbard-Stratonovich white-noise field qj = iϕj + igAj.

(2.e) Continue from (2.c) and apply the technique from (2.d) to derive the path-integral in Eq. (2).
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Problem 2 Feynman diagrams 1: interacting electron gas

In this problem we use the linked-cluster theorem to expand the ground state energy E0 of an
interacting electron gas to first order:

E0 = iV Σ{linked-cluster diagrams in momentum space} (5)

(2.a) Consider an interaction V (q) independent of spin, and derive all first-order Feynman diagrams
contributing to the linked-cluster expression for the ground state energy.

(2.b) Calculate these so-called Hartree-Fock diagrams, which consist of direct and exchange terms.

(2.c) In real-space, the first-order perturbative result for E0 can be written

E0 =
1

2

∑
σ,σ′

ˆ
d3xd3y V (x− y) Cσσ′(x− y). (6)

Write out the corresponding real-space Feynman diagrams for E0; next derive and calculate
Feynman diagrams for the real-space correlations Cσσ′(x− y).

Problem 3 Feynman diagrams 2: large-N limit

In this problem we learn a powerful approximation technique to drop certain types of diagrams.
The basic idea is to consider a system with N = 2S + 1 spin components and consider the limit
N →∞ where certain classes diagrams vanish. Neglecting the same diagrams even for small values
of N (down to N = 2) usually yields a systematic simplification of a given theory.

(2.a) Consider interacting fermions with N = 2S + 1 spin-degeneracy and interaction strength
V (q) = 1

N
U(q). Draw the Feynman diagrams expansion for the ground state energy and

identify leading and sub-leading terms in the 1/N expansion.

(2.b) Discuss which classes of diagrams in the linked-cluster expansion of the ground state energy
vanish.

(2.c) Nχ(0)(q) = 〈δρ(q)δρ(−q)〉0 is the susceptibility of the non-interacting Fermi gas. Draw
the corresponding diagrams for the polarization bubble χ(q), up to order 1/N and where
q = (q, ν).

(2.d) Derive the self-energy of the system in the large-N limit and extract an effective interaction
between the fermions in the large-N limit.

2


	Hubbard-Stratonovich decoupling of the Coulomb interaction - part 1
	Feynman diagrams 1: interacting electron gas
	Feynman diagrams 2: large-N limit

