

Sheet 9:

Hand-out: Friday, Jun 23, 2023

Problem 1 Quantum-Classical mapping: XY model
In this problem we consider the 1D quantum XY model, which can be described by the Hamiltonian

$$
\begin{equation*}
\hat{\mathcal{H}}_{\mathrm{XY}}=U \sum_{j}\left(\hat{n}_{j}-\bar{n}\right)^{2}-t \sum_{j} \cos \left(\hat{\theta}_{j+1}-\hat{\theta}_{j}\right) . \tag{1}
\end{equation*}
$$

Here $\hat{n}_{i}=-i \partial_{\theta_{i}}$ can be thought of as the conjugate (angular) momentum to the variable $\theta_{i} \in[0,2 \pi)$, with $\left[\hat{\theta}_{i}, \hat{n}_{j}\right]=i \delta_{i, j}$. The corresponding partition function can be defined by taking the trace in the eigen-basis $\left\{\left|\theta_{j}\right\rangle\right\}$ of $\hat{\theta}_{j}$:

$$
\begin{equation*}
Z=\operatorname{tr}\left(e^{-\beta \hat{\mathcal{H}}_{\mathrm{XY}}}\right)=\int_{0}^{2 \pi} \prod_{j} d \theta_{j}\langle\underline{\theta}| e^{-\beta \hat{\mathcal{H}}_{\mathrm{XY}}}|\underline{\theta}\rangle . \tag{2}
\end{equation*}
$$

(1.a) Before turning to the quantum case above, consider the classical anisotropic XY model in 2D, with classical angular variables $\theta_{j, s} \in[0,2 \pi)$ (indices j and s label the two spatial directions) and the energy functional

$$
\begin{equation*}
\mathscr{H}=-J_{x} \sum_{j, s} \cos \left(\theta_{j, s}-\theta_{j+1, s}\right)-J_{y} \sum_{j, s} \cos \left(\theta_{j, s}-\theta_{j, s+1}\right) . \tag{3}
\end{equation*}
$$

Write down the integral expression for the classical partition function Z_{C} for this model.
(1.b) Now we return to the quantum problem. Perform a Trotterization of Z in Eq. (2) and introduce identities

$$
\begin{equation*}
1=\int_{0}^{2 \pi} \prod_{j} d \theta_{j}|\underline{\theta}\rangle\langle\underline{\theta}|, \tag{4}
\end{equation*}
$$

to derive a formal path-integral expression for Z, without evaluating any matrix-elements at this point. Use imaginary time steps $\delta \tau=\beta / N$ (later $N \rightarrow \infty$) and discrete imaginary times $\tau_{s}=s \delta \tau$.
(1.c) In (1.b) you encounter matrix elements of the form

$$
\begin{equation*}
\left\langle\underline{\theta}\left(\tau_{s+1}\right)\right| e^{-\delta \tau \hat{\mathcal{H}}_{\mathrm{XY}}}\left|\underline{\theta}\left(\tau_{s}\right)\right\rangle . \tag{5}
\end{equation*}
$$

Simplify these matrix elements by using $\langle\theta \mid n\rangle=e^{i n \theta}$ and introducing another identity,

$$
\begin{equation*}
1=\prod_{j} \sum_{n_{j}}|\underline{n}\rangle\langle\underline{n}|, \tag{6}
\end{equation*}
$$

and using the Poisson summation formula and Villain approximation:

$$
\begin{equation*}
\sum_{n} e^{-C n^{2}+i n \theta}=\sqrt{\frac{\pi}{2 C}} \sum_{p} e^{-\frac{1}{4 C}(\theta+2 \pi p)^{2}} \approx \text { const } \times \exp \left[\frac{1}{2 C} \cos \theta\right] . \tag{7}
\end{equation*}
$$

(1.d) From your results in (1.c) show for $\bar{n} \in \mathbb{Z}$ that

$$
\begin{equation*}
Z \propto Z_{C} \tag{8}
\end{equation*}
$$

In particular, discuss the Berry-phase contributions to the path integral and why integer $\bar{n} \in \mathbb{Z}$ ensures that Berry phase terms have no effect.

Problem 2 Charge-density wave instability in the 1D Fermi-Hubbard model
In this problem we study charge-density wave instabilities in the 1D spin-1/2 weakly attractive $(g>0)$ Fermi gas described by the Hamiltonian

$$
\begin{equation*}
\hat{\mathcal{H}}=\hat{\mathcal{H}}_{0}+\hat{\mathcal{H}}_{\text {int }}=-t \sum_{j, \sigma}\left(\hat{c}_{j+1, \sigma}^{\dagger} \hat{c}_{j, \sigma}+\text { h.c. }\right)-g \sum_{j} \hat{n}_{j, \uparrow} \hat{n}_{j, \downarrow} . \tag{9}
\end{equation*}
$$

(2.a) Describe the ground state of the system at $g=0$, and calculate $\left\langle\hat{n}_{j}\right\rangle=\sum_{\sigma}\left\langle\hat{n}_{j, \sigma}\right\rangle$. Assume half-filling and periodic boundaries.
(2.b) The effect of a weak staggered potential $V_{j}=-(-1)^{j} V_{0}$ is to induce a staggered charge density $\left\langle\hat{n}_{j, \sigma}\right\rangle=\left\langle\hat{n}_{j, \sigma}\right\rangle_{V_{0}=0}+(-1)^{j} \Delta_{j} / g$. In the interacting model at low temperatures this charge-density wave order will remain even after the staggered field V_{0} is removed. Derive the following mean-field Hamiltonian, by ignoring fluctuations $\delta \hat{n}_{j}^{2}$ of the staggered charge density:

$$
\begin{equation*}
\hat{\mathcal{H}}_{\mathrm{int}} \rightarrow \sum_{j}\left(-(-1)^{j} \Delta_{j} \hat{n}_{j}+\frac{\Delta_{j}^{2}}{g}\right)+\mathcal{O}\left(\delta \hat{n}_{j}^{2}\right) \tag{10}
\end{equation*}
$$

(2.c) Describe how the transformation in (2.b) can be obtained as an exact result using a pathintegral, using the Hubbard-Stratonovich trick. Note that the order parameter is real, not complex.
(2.d) Calculate the excitation spectrum of the mean-field Hamiltonian in the presence of uniform staggered order $\Delta_{j} \equiv \Delta \neq 0$. Note: You may use analogies with BCS formalism and utilize the spinor field $\hat{\Psi}_{k, \sigma}=\left(\hat{c}_{k, \sigma}, \hat{c}_{k+\pi, \sigma}\right)^{T}$.
(2.e) Calculate the free energy $F[\Delta]$ and derive the gap equation for $\Delta(T)$ at finite temperatures T. Discuss how order can develop spontaneously at low T and sketch your result for $F[\Delta]$ for different temperatures.

