

https://www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_23/TMP-TA3/index.html

Sheet 7:

Hand-out: Friday, Jun 09, 2023

Problem 1 Generating functionals

In this problem we derive the relation between the free-particle S-matrix and the generating functional containing the Green's function:

$$S[\eta^*, \eta] \equiv \langle 0|\mathcal{T} \exp\left[-i\int_{-\infty}^{\infty} dt \left(\eta^*(t)\hat{\psi}(t) + \hat{\psi}^{\dagger}(t)\eta(t)\right)\right]|0\rangle = \\ = \exp\left[-i\int_{-\infty}^{\infty} dt \ \eta^*(t)G(t-t')\eta(t)\right].$$
(1)

Here, $\hat{\psi}$ is a bosonic or fermionic field operator and $\eta(t)$ is a time-dependent \mathbb{C} or Grassman number, respectively.

- (3.a) Start with the case where $\hat{\psi}(t) = \hat{a}(t) = e^{-i\omega t}\hat{a}$ is a bosonic field in the interaction picture as introduced in the lecture. First, introduce N small time steps $\Delta \tau = 2\tau/N$ to write out the time-ordered exponential in the first line of Eq. (1), where the integration limits are from $-\tau$ to τ , and later $N \to \infty$, $\tau \to \infty$.
- (3.b) In (3.a) you obtain a product over many exponentials. Factorize each exponential into parts containing only \hat{a} and \hat{a}^{\dagger} operators, respectively.

Hint: For
$$\hat{A}$$
 and \hat{B} with $\left[[\hat{A}, \hat{B}], \hat{A} \right] = \left[[\hat{A}, \hat{B}], \hat{B} \right] = 0$, it holds:

$$\exp \left[\hat{A} + \hat{B} \right] = \exp \left[\hat{B} \right] \exp \left[\hat{A} \right] \exp \left[[\hat{A}, \hat{B}]/2 \right]$$
(2)

- (3.c) Use the result from (3.b) to normal-order the expression. This will allow you to evaluate $S[\eta^*(t), \eta(t)]$ explicitly.
- (3.d) Compare your result in (3.c) with the second line of Eq. (1) to show the equality of both expressions in Eq. (1). You may use that for free bosons

$$G(t-t') = -i\theta(t-t')e^{-i\omega(t-t')}.$$
(3)

(3.e) Repeat (3.a) - (3.d) for the fermionic driven oscillator with $\hat{\psi}(t) = \hat{c}(t) = e^{-i\epsilon t}\hat{c}$ and Grassman numbers $\eta(t)!$

Hint: Do the calculation separately for $\epsilon > 0$ (particles) and $\epsilon < 0$ (holes), where in the latter case the ground state is not $|0\rangle$, but $|\psi_0\rangle = c^{\dagger}|0\rangle$ (hole vacuum). Thus, in 3(c) use anti-normal-order for $\epsilon < 0$.

Problem 2 Fermionic coherent states

In this problem we show some basic properties of fermionic coherent states. We will denote by c and c^* the Grassman variables corresponding to the set of fermionic operator \hat{c} and \hat{c}^{\dagger} .

(1.a) Show that the overlap of two coherent states is

$$\langle c^* | c \rangle = e^{c^* c}. \tag{4}$$

(1.b) Show the completeness relation,

$$\int dc^* dc \ |c\rangle \langle c^*| e^{-c^* c} = 1.$$
(5)

Hint: Start from the left hand side and use the explicit representation $|c\rangle = |0\rangle + |1\rangle c$.

(1.c) Show the trace formula:

tr
$$\hat{A} = \int dc^* dc \ e^{-c^* c} \langle -c^* | \hat{A} | c \rangle.$$
 (6)

Hint: Show first that: $\delta_{n,m} = \langle n|m \rangle = \int dc^* dc \ e^{-c^*c} \langle -c^*|m \rangle \langle n|c \rangle$, for n, m = 0, 1 labeling Fock states.