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Problem 1 The Cooper pair wavefunction

In this problem we derive Cooper’s expression for the binding energy of a single Cooper pair.
Consider the following Hamiltonian,

Ĥ =
∑
k,σ

εk ĉ
†
k,σ ĉk,σ + Ĥint (1)

as discussed in the lecture.

(2.a) Start from a Fermi-sea |FS〉 and make Cooper’s ansatz for a state with two more electrons,

|Ψ〉 = Λ̂†|FS〉 Λ̂† =
∑
k

φk ĉ
†
k,↓ĉ

†
−k,↓. (2)

Show that (kF is the Fermi momentum):

|Ψ〉 =
∑
|k|>kF

φk |kP 〉, with |kP 〉 = ĉ†k,↓ĉ
†
−k,↓ |FS〉. (3)

In the following exercises we will assume that the Fermi energy εF = ε(kF ) = 0.

(2.b) Assume that |Ψ〉 is an eigenstate of Ĥ, i.e. Ĥ|Ψ〉 = E|Ψ〉. By comparing components of
this vector equation on both sides, show that

Eφk = 2εk φk +
∑
|k′|>kF

〈kP |Ĥint|k′P 〉 φk′ (4)

(2.c) Simplify the interaction by making Cooper’s seminal ansatz,

Vk,k′ ≡ 〈kP |Ĥint|k′P 〉 =

{
−g0/V |εk|, |εk′| < ωD

0 else
(5)

Here ωD describes a narrow energy shell and V = Ld denotes the system’s volume. Using
this simplified interaction, show that Eq. (4) becomes:

φk = − g0/V

E − 2εk

∑
0<εk′<ωD

φk′ . (6)
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(2.d) From Eq. (6) derive a self-consistency equation for the energy E of the Cooper pair! Take
the continuum limit by replacing 1

V

∑
0<εk

→ N(0)
´ ωD

0
dε, where N(0) is the density of

states per spin per unit volume at the Fermi energy, and show that:

1 = g0N(0)

ˆ ωD

0

dε
1

2ε− E
(7)

(2.e) Solve Eq. (7) for E, by assuming 2ωD − E ≈ 2ωD. Show that:

E = −2ωD e
− 2

g0N(0) . (8)

Problem 2 Green’s functions

In this problem we calculate some important Green’s functions which we saw in the lecture.

(1.a) For a bosonic field φ̂q =
√

~/(2mωq)
(
âq + â†−q

)
and a Hamiltonian Ĥ0 =

∑
q ωq

(
â†qâq + 1/2

)
,

show that

D(q, t) ≡ −i〈0|T φ̂q(t)φ̂−q(0)|0〉 = −i ~
2mωq

[
θ(t)e−iωqt + θ(−t)eiωqt

]
, (9)

and

D(q, ν) =
~

2mωq

[
1

ν − (ωq − i0+)
+

1

−ν − (ωq − i0+)

]
. (10)

(1.b) For a fermionic field ĉk,σ and a Hamiltonian Ĥ0 =
∑

k,σ εkĉ
†
k,σ ĉk,σ with ground state

|ψ0〉 =
∏

σ,|k|<kF ĉ
†
k,σ|0〉, show that

Gσ,σ′(k,k′; t) ≡ −i〈ψ0|T ĉk,σ(t)ĉ†k′,σ′(0)|ψ0〉 = δk,k′δσ,σ′

{
−iθ(|k| − kF )e−iεkt t > 0

iθ(kF − |k|)e−iεkt t < 0

(11)
and

G(k, ω) =
1

ω − εk + i0+sgn(εk)
. (12)

Here kF denotes the Fermi momentum.

Problem 3 Using Grassman integrals

In this exercise, we use Grassman integrals to prove the following identity:

det

(
A B
C D

)
= det

[
A−BD−1C

]
detD, (13)

for square matrices A, D of size N × N and M ×M respectively; B and C are matrices of
corresponding sizes. To this end, recall first that

det

(
A B
C D

)
=

ˆ N∏
j=1

dα∗jdαj

M∏
k=1

dβ∗kdβk exp

[
(α∗, β∗)

(
A B
C D

)(
α
β

)]
, (14)

with vectors of Grassman numbers α, α∗, β, β∗ of lengths N,N,M,M , respectively.
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(2.a) Separate the expression Eq (14) into an inner and an outer integral, by writing

det

(
A B
C D

)
=

ˆ N∏
j=1

dα∗jdαj exp[−α∗Aα] Y [α∗, α], (15)

and find an expression for Y [α∗, α] as a Grassman integral over β∗ and β.

(2.b) Solve the inner integral and show that its result is given by

Y [α∗, α] = det (D) exp
[
α∗BD−1Cα

]
. (16)

Hint: Use the following Gaussian Grassman integral:

ˆ ∏
j

dη∗jdηj exp [−η∗Aη + j∗η + η∗j] = det(A) exp[j∗A−1j], (17)

for matrix A and vectors of Grassman numbers j and j∗.

(2.c) Use the result from (2.b) to solve the outer integral in (2.a). This way, show the identity
Eq. (13).
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