
LUDWIGMAXIMILIANS UNIVERSITÄT MÜNCHEN

FAKUltÄt FÜr Physik im SoSe 2023
TMP - TA3: Condensed Matter Many-Body-Physics and Field Theory I
Dozent: Prof. Dr. Fabian Grusdt
Übungen: Mattia Moroder

https://www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_23/TMP-TA3/index.html

Sheet 5:

Hand-out: Friday, May 19, 2023

Problem 1 Goldstone mode in the Heisenberg ferromagnet
In this problem we discuss an example of spontaneous symmetry breaking in the ground state of the one-dimensional Heisenberg model, and show that it features a non-relativistic gapless Goldstone mode.
(1.a) As a warmup, consider the classical 1D Heisenberg ferromagnet $(J<0)$, with the classical energy

$$
\begin{equation*}
E=J \sum_{j} \boldsymbol{S}_{j} \cdot \boldsymbol{S}_{j+1} . \tag{1}
\end{equation*}
$$

Find all classical ground state configurations $\left\{\boldsymbol{S}_{j}\right\}$ which minimize the energy functional $E\left[\left\{\boldsymbol{S}_{j}\right\}\right]$ and determine the ground state energy E_{0}. Show that E is invariant under global $O(3)$ rotations. Are the ground states minimizing $E\left[\left\{\boldsymbol{S}_{j}\right\}\right]$ symmetric under $O(3)$?
(1.b) Now we move on the the quantum 1D Heisenberg ferromagnet $(J<0)$, with the Hamiltonian

$$
\begin{equation*}
\hat{\mathcal{H}}=J \sum_{j} \hat{\boldsymbol{S}}_{j} \cdot \hat{\boldsymbol{S}}_{j+1} . \tag{2}
\end{equation*}
$$

Using the variational principle, show that the classical ground states $\left|\left\{\boldsymbol{\sigma}_{j}\right\}\right\rangle$, obtained by multiplying the positive-eigenvalue eigenstates of $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{S}}_{j}$, are true ground (and thus eigen-) states of $\hat{\mathcal{H}}$.
(1.c) Consider again the quantum 1D Heisenberg ferromagnet ($J<0$) from (1.b). Choose the classical ground state $\left|\mathrm{FM}_{z}\right\rangle$ with all spins pointing along z and define the following set of all states with total magnetization $S_{\text {tot }}^{z}=L / 2-1$,

$$
\begin{equation*}
\left\{\hat{S}_{j}^{-}\left|\mathrm{FM}_{z}\right\rangle\right\}_{j=1 \ldots L} . \tag{3}
\end{equation*}
$$

Show that the Hamiltonian $\hat{\mathcal{H}}$ is block-diagonal in $S_{\text {tot }}^{z}=\sum_{j} \hat{S}_{j}^{z}$ and diagonalize the block with $S_{\mathrm{tot}}^{z}=L / 2-1$. Show that the resulting one-magnon states have a dispersion relation

$$
\begin{equation*}
\omega_{k}=-J\left(1-\cos \left(k_{x}\right)\right) \simeq-\frac{J}{2} k_{x}^{2}+\mathcal{O}\left(k_{x}^{4}\right) . \tag{4}
\end{equation*}
$$

This is the gapless (non-relativistic) Goldstone mode of this model.

Problem 2 Jordan-Wigner transformation

In the lecture we solve the 1D XY model by mapping it to a free-fermion Hamiltonian. In this problem we consider the XXZ Hamiltonian,

$$
\begin{equation*}
\hat{\mathcal{H}}_{\mathrm{XXZ}}=-J_{\perp} \sum_{j}\left(\hat{S}_{j+1}^{x} \hat{S}_{j}^{x}+\hat{S}_{j+1}^{y} \hat{S}_{j}^{y}\right)-J_{z} \sum_{j} \hat{S}_{j+1}^{z} \hat{S}_{j}^{z} \tag{5}
\end{equation*}
$$

where $\hat{S}_{j}^{\mu}=\hat{\sigma}_{j}^{\mu} \hbar / 2$ is a spin- $1 / 2$ operator.
(2.a) Apply the Jordan-Wigner transformation to derive an equivalent Hamiltonian to $\hat{\mathcal{H}}_{\mathrm{XXZ}}$ expressed in terms of spin-less Jordan-Wigner fermions. Write out the interactions in momentum modes and show that the resulting Hamiltonian becomes

$$
\begin{equation*}
\hat{\mathcal{H}}_{\mathrm{XXZ}}=\sum_{k} \omega_{k} \hat{c}_{k}^{\dagger} \hat{c}_{k}-\frac{J_{z}}{L} \sum_{k, k^{\prime}, q} \cos (q) \hat{c}_{k-q}^{\dagger} \hat{c}_{k^{\prime}+q}^{\dagger} \hat{c}_{k^{\prime}} \hat{c}_{k} \tag{6}
\end{equation*}
$$

where L is the total number of lattice sites (assume periodic boundary conditions), and

$$
\begin{equation*}
\omega_{k}=J_{z}-J_{\perp} \cos k \tag{7}
\end{equation*}
$$

(2.b) Assume $J_{z}=J_{\perp}=J>0$ and describe the ground state and low-energy excitations in terms of Jordan-Wigner fermions. How does the state relate to the Heisenberg ferromagnet discussed in Problem 1?
(2.c) Assume $J_{z}=0$ (as in the lecture, XY model) and describe the low-energy excitations of the model. Does the model have a gapless low-energy mode?
(2.d) Assume now $J_{\perp}=0$ (Ising model). Does the model have a gapless low-energy mode?

Problem 3 Attaching strings
Here we study hard-core particles $\hat{d}_{j}^{(\dagger)}$ on the sites of a one-dimensional chain, coupled to additional spin- $1 / 2$ particles $\hat{\boldsymbol{\sigma}}_{\langle i, j\rangle}$ on the links $\langle i, j\rangle$ of the chain. The system is described by the Hamiltonian:

$$
\begin{equation*}
\hat{\mathcal{H}}=-t \sum_{j}\left(\hat{d}_{j+1}^{\dagger} \hat{\sigma}_{\langle j+1, j\rangle}^{z} \hat{d}_{j}+\text { h.c. }\right)-\mu \sum_{j} \hat{d}_{j}^{\dagger} \hat{d}_{j} \tag{8}
\end{equation*}
$$

(this is a so-called \mathbb{Z}_{2} lattice gauge theory).
(3.a) Assume first that the particles $\hat{d}_{j} \equiv \hat{a}_{j}$ are bosons, $\left[\hat{a}_{i}, \hat{a}_{j}^{\dagger}\right]=\delta_{i, j}$. Introduce new operators $\hat{\alpha}_{i}=\hat{a}_{i} \prod_{j>i} \hat{A}_{j}$, with an appropriately chosen string of operators \hat{A}_{j}, such that the system Hamiltonian can be written as a free boson model:

$$
\begin{equation*}
\hat{\mathcal{H}}_{a}=-t \sum_{j}\left(\hat{\alpha}_{j+1}^{\dagger} \hat{\alpha}_{j}+\text { h.c. }\right)-\mu \sum_{j} \hat{\alpha}_{j}^{\dagger} \hat{\alpha}_{j} . \tag{9}
\end{equation*}
$$

Assume an infinite system for simplicity.
(3.b) Now assume that the particles $\hat{d}_{j} \equiv \hat{c}_{j}$ are fermions, $\left\{\hat{c}_{i}, \hat{c}_{j}^{\dagger}\right\}=\delta_{i, j}$. Find new operators $\hat{\eta}_{i}=\hat{c}_{i} \prod_{j>i} \hat{B}_{j}$ with appropriate \hat{B}_{j}, such that a free-fermion Hamiltonian can be obtained. Assume an infinite system again.

