Problem 1
Take the bidoublet

$$
\Phi=\left(\begin{array}{ll}
\tilde{\varphi} \varphi
\end{array}\right), \quad(1)
$$

with

$$
\varphi=\binom{\varphi^{+}}{\varphi} \quad, \quad \text { (2) }
$$

and

$$
\begin{align*}
\tilde{\varphi}=i \sigma_{2} \varphi^{*} & =i\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{\varphi^{-}}{\varphi^{0}} \\
& =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{\varphi^{-}}{\varphi^{0}} \tag{3}\\
& =\binom{\left(\varphi^{0}\right)^{*}}{-\varphi^{-}}
\end{align*}
$$

Thus, explicit fom of Φ is

$$
\Phi=\left(\begin{array}{cc}
\left(\varphi^{0}\right)^{*} & \varphi^{t} \tag{u}\\
-\varphi^{-} & \varphi^{0}
\end{array}\right)
$$

(i) Take (4) \& find its hermition conjugate \bar{I}^{+}

$$
\Phi^{+}=\left(\begin{array}{ll}
\varphi^{0} & -\varphi^{+} \\
\varphi^{-} & \left(\varphi^{0}\right)^{*}
\end{array}\right) \quad \text { (5) }
$$

From (4), (5) we get

$$
\begin{align*}
\operatorname{Tr}\left(\bar{\Phi}^{+} \bar{P}\right) & =\operatorname{Tr}\left[\left(\begin{array}{cc}
\varphi^{0} & -\varphi^{+} \\
\varphi^{-} & \left(\varphi^{0}\right)^{*}
\end{array}\right)\left(\begin{array}{cc}
\left(\varphi_{0}\right)^{*} & \varphi^{+} \\
-\varphi^{-} \varphi^{0}
\end{array}\right)\right]_{(6} \tag{6}\\
& =2\left(\left|\varphi^{0}\right|^{2}+\left|\varphi^{+}\right|^{2}\right)
\end{align*}
$$

At the same time

$$
\begin{equation*}
\varphi^{+} \varphi=\left|\varphi^{0}\right|^{2}+\left|\varphi^{+}\right|^{2} \tag{7}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\operatorname{Tr}\left(\bar{\Phi}^{+} \bar{q}\right)=\frac{1}{2} \varphi^{+} \varphi \tag{8}
\end{equation*}
$$

(ii) we can write (3) in tem of componesds say $f_{i}, i=1, \ldots, 4$.

Then

$$
\operatorname{Tr}\left(\Phi^{+} \Phi\right)=\sum_{i} f_{i}^{2} \rightarrow S O(u) \text { symuetry. (a) }
$$

sinae $\operatorname{SO}(4) \cong \operatorname{SU}(2), \times S U(2)_{2}$, we have

$$
\begin{equation*}
\Phi \rightarrow \Phi^{\prime}=v_{1} \Phi V_{2}+ \tag{10}
\end{equation*}
$$

het's check that, indeed, the trase is imariant wrt (10):

$$
\begin{align*}
& \operatorname{Tr}\left(\Phi^{+} \Phi\right) \rightarrow \operatorname{Tr}\left(\Phi^{\prime^{\prime}} \Phi^{\prime}\right)=\operatorname{Tr}\left[v_{2} \Phi^{+} v_{1}^{\prime \prime} V_{1} \Phi U_{2}^{\prime \prime}\right] \\
& =\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \\
& \pi \underbrace{}_{=\| \downarrow} \\
& \text { (II) cydic } \\
& \text { property. } \\
& \text { property. }
\end{align*}
$$

(iii)

$$
\begin{align*}
\operatorname{det} \Phi \rightarrow \operatorname{det} \bar{\Phi}^{\prime} & =\operatorname{det} V_{1} \Phi V_{2}+ \\
& =\operatorname{det} v_{1} \operatorname{det} \Phi \operatorname{det} \tilde{V}^{t} \\
& =\operatorname{det} \Phi \text { (12) } \tag{12}
\end{align*}
$$

(iv) we have et our disposal the following invariants:
$\operatorname{Tr}\left(\bar{\Phi}^{\dagger} \bar{\Phi}\right), \operatorname{det} \Phi, \operatorname{det} \Phi^{+}, \operatorname{Tr}\left(\bar{\Phi}^{\dagger} \Phi \Phi+\bar{\Phi}\right)$

$$
\frac{\lambda}{4 \cdot c} \text { of } \operatorname{det} \bar{E}
$$

\otimes HOWEVER $\operatorname{det} \Phi$ a $\operatorname{Tr}\left(\bar{\Phi}^{+} \Phi\right)$ are not independent:

$$
\begin{align*}
\operatorname{det} \Phi=\operatorname{det}\left(\begin{array}{cc}
\left.\mid \varphi^{0}\right)^{*} & \varphi^{+} \\
-\varphi^{-} & \varphi^{0}
\end{array}\right) & =\left|\varphi_{0}\right|^{2}+\left|\varphi^{+}\right|^{2} \tag{13}\\
& =\frac{1}{2} \operatorname{Tr}\left(\Phi^{+} \Phi\right)
\end{align*}
$$

conclusion: we don't need to include $\operatorname{det} \Phi$, det It in the $^{\text {in }}$ potential.
What about $\operatorname{tr}(\Phi+\Phi \Phi+\Phi)$? certainly it is invariant. BUT, we can explicitly see the nt

$$
\begin{align*}
\operatorname{Tr}\left(\bar{\Phi}+\Phi \Phi^{+} \bar{\Phi}\right) & =2\left(\left.1 \varphi\right|^{2}+|\varphi+|^{2}\right)^{2} \\
& =\frac{1}{2} \operatorname{Tr}\left(\Phi^{+} \Phi\right)^{2} \tag{14}
\end{align*}
$$

Thus, the most geneal potential reads

$$
V(\Phi)=m^{2} \operatorname{Tr}(\Phi+\Phi)+\lambda \operatorname{Tr}\left(\Phi^{+} \Phi\right)^{2} \text { (15) }
$$

Problem 2

Take now

$$
\Phi=\left(\begin{array}{ll}
\tilde{\varphi}_{1} & \varphi_{2} \tag{1}
\end{array}\right)
$$

with

$$
\varphi_{i}=\binom{\varphi_{i}^{+}}{\varphi_{i}^{0}}, i=1,2, \text { (2) }
$$

l as before

$$
\tilde{\varphi}_{i}=i \sigma_{2} \varphi_{l}^{*}=\binom{\left(\varphi_{i}^{0}\right)^{*}}{-\varphi_{i}^{-}} \cdot(3)
$$

Therefore

$$
\Phi=\left(\begin{array}{cc}
\left(\varphi_{1}^{0}\right)^{*} & \varphi_{2}^{+} \tag{u}\\
-\varphi_{1}^{-} & \varphi_{2}^{0}
\end{array}\right)
$$

and

$$
\Phi^{+}=\left(\begin{array}{ll}
\varphi_{1}^{0} & -\varphi_{1}^{+} \\
\varphi_{2}^{-} & \left(\varphi_{2}^{0}\right)^{*}
\end{array}\right) \quad \text { (5) }
$$

(i) From (u) se (5), we get

$$
\begin{equation*}
\operatorname{Tr}(\Phi+\Phi)=\left|\varphi_{i}^{0}\right|^{2}+\left|\varphi_{1}^{+}\right|^{2}+\left|\varphi_{2}^{0}\right|^{2}+\left|\phi_{2}^{+}\right|^{2}, \tag{6}
\end{equation*}
$$ which is manifestly 'M-Invariant.

(ii) as before, let's write in term of components the above $f_{i}, i=1, \ldots, 8$.
It becomes clear that

$$
\begin{equation*}
\operatorname{Tr}(\Phi+\Phi)=\sum_{i=1}^{8} f_{i}^{2} \tag{7}
\end{equation*}
$$ anearing that it is $S^{\prime} O(8)$-Invariant.

(iii), (iv he have the following pessibillitios: $\operatorname{Tr}\left(\Phi^{+} \Phi\right), \operatorname{Tr}\left(\Phi^{+} \Phi \Phi^{+} \Phi\right), \operatorname{det} \Phi, \operatorname{det} 卫^{+}(s)$ Let's check what we get:

$$
\begin{equation*}
\operatorname{Tr}\left(\Phi+\Phi \Phi^{+} \Phi\right) \neq \operatorname{Tr}\left(\Phi^{+} \Phi\right)^{2} \tag{8}
\end{equation*}
$$ actually it also depends on let Φ.

Tus,

$$
\begin{align*}
V(\Phi) & =m_{1}^{2} \operatorname{Tr}\left(\Phi^{+} \Phi\right)+m_{2}^{2}(\operatorname{det} \Phi+k . c .) \tag{a}\\
& +\lambda_{1} \operatorname{Tr}^{2}(\Phi \Phi \Phi)+\lambda_{2} \operatorname{Tr} \Phi^{+} \Phi(\operatorname{det} \Phi+h . c .)
\end{align*}
$$

(v) Define

$$
\begin{equation*}
\widetilde{\Phi}=i \sigma_{2} \Phi^{*} i \sigma_{2} \tag{10}
\end{equation*}
$$

Then

$$
\begin{align*}
\tilde{\Phi} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
\varphi_{1}^{0} & \varphi_{2}^{-} \\
-\varphi_{1}^{+} & \left(\varphi_{2}^{0}\right)^{*}
\end{array}\right)^{*}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
-\varphi_{1}^{+} & \left(\varphi_{2}^{0}\right)^{*} \\
-\varphi_{1}^{0} & -\varphi_{2}^{-}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \tag{11}\\
& =\left(\begin{array}{cc}
-\left(\varphi_{2}^{0}\right)^{*} & -\varphi_{1}^{+} \\
\varphi_{2}^{-} & -\varphi_{1}^{0}
\end{array}\right) \stackrel{(3)}{=}-\left(\begin{array}{ll}
\varphi_{2}^{2} & \varphi_{1}
\end{array}\right) \tag{12}
\end{align*}
$$

(vi) $\Phi+\Phi+\tilde{\Phi}+\tilde{\Phi}=\left(\begin{array}{cc}\left|\varphi_{1}^{0}\right|^{2}+\left|\varphi_{1}^{+}\right|^{2}+\left|\varphi_{2}^{0}\right|^{2}+\left|\varphi_{2}^{+}\right|^{2} & 0 \\ 0 & \sim\end{array}\right)$
manifestly invarient under $S U(2) \times s O(2)$.
(vii) $\operatorname{Tr}\left(\Phi^{+}+\tilde{\Phi}\right)=-2\left(\varphi_{1}^{0}\left(\varphi_{2}^{0}\right)^{*}+\varphi_{1}^{+}\left(\varphi_{2}^{+}\right)^{*}\right)$ (13) comparing with

$$
\begin{equation*}
\operatorname{det} \Phi^{+}=\varphi_{1}^{0}\left(\varphi_{2}^{0}\right)^{*}+\varphi_{1}^{+}\left(\varphi_{2}^{+}\right)^{*} \tag{in}
\end{equation*}
$$

we obtain

$$
\operatorname{Tr}\left(\bar{q}^{+} \tilde{q}\right)=-2 \operatorname{det} \Phi^{+} \cdot(15)
$$

(viii) We have

$$
\operatorname{Tr}\left(\Phi^{+} \Phi\right), \operatorname{Tr} \tilde{\Phi}^{+} \Phi+h \cdot c \cdot, \ldots
$$

Problem 3
Take

$$
\begin{align*}
& V=-\frac{\mu^{2}}{2}\left(\varphi_{L}^{2}+\varphi_{k}^{2}\right)+\frac{\lambda}{4}\left(\varphi_{L}^{4}+\varphi_{k}^{4}\right)+\frac{\lambda^{\prime}}{2} \varphi_{L}^{2} \phi_{k}^{2} \tag{1}\\
& \mu, \lambda, \lambda^{\prime}>0 .
\end{align*}
$$

The extrema of V are determined by

$$
\left.\left.\frac{\partial V}{\partial \varphi_{L}}\right|_{\substack{\varphi_{L}=\left\langle\varphi_{L}\right\rangle \\
\varphi_{R}=\left\langle\varphi_{R}\right\rangle}}=\left.\frac{\partial V}{\partial \varphi_{R}}\right|_{Q_{L}=\left\langle\varphi_{L}\right\rangle} ^{\varphi_{R}=\left\langle\varphi_{R}\right\rangle} \right\rvert\, \begin{array}{ll}
& =0 . \text { (2) } \\
\end{array}
$$

Explicitly, from (2) we get:

$$
\begin{aligned}
& \left\langle\varphi_{L}\right\rangle\left(-\mu^{2}+\lambda\left\langle\varphi_{L}\right\rangle^{2}+\lambda^{\prime}\left\langle\varphi_{R}\right\rangle^{2}\right)=0, \text { (3) } \\
& \left\langle\varphi_{k}\right\rangle\left(-\mu^{2}+\lambda\left\langle\varphi_{k}\right\rangle^{2}+\lambda^{\prime}\left\langle\varphi_{L}\right\rangle^{2}\right)=0, \text { (u) }
\end{aligned}
$$

from (3) s (a), we immediately see the saddles of (1):
(i) $\left\langle\varphi_{L}\right\rangle=0,\left\langle\varphi_{R}\right\rangle=0$, (5)
(ii) $\left\langle\varphi_{L}\right\rangle=0,\left\langle\varphi_{R}\right\rangle^{2}=\frac{\mu^{2}}{\lambda} \neq 0$,
(iii) $\left\langle\phi_{l}\right\rangle=\frac{\mu^{2}}{\lambda} \neq 0,\left\langle\varphi_{k}\right\rangle=0$, (7)
(iv) $\left\langle\varphi_{l}\right\rangle^{2}=\left\langle\phi_{l}\right\rangle^{2}=\frac{\mu^{2}}{\lambda+\lambda^{\prime}} \neq 0$. (8)

Whether (i) - (iv) correspond to minima or maxima is found by luspecting the mass matrix (2 nd denvatives of V)

$$
\frac{\partial^{2} V}{\partial \varphi_{i} \varphi_{j}}=\left(\begin{array}{cc}
-\mu^{2}+3 \lambda\left\langle\varphi_{L}\right\rangle^{2}+\lambda^{\prime}\left\langle\varphi_{R}\right\rangle^{2} & 2 \lambda^{\prime}\left\langle\varphi_{L}\right\rangle\left\langle\varphi_{R}\right\rangle \\
2 \lambda^{\prime}\left\langle\varphi_{L}\right\rangle\left\langle\varphi_{R}\right\rangle & -\mu^{2}+3 \lambda\left\langle\varphi_{R}\right\rangle^{2}+\lambda^{\prime}\left\langle\varphi_{L}\right\rangle
\end{array}\right)
$$

evaluated on (i)-(iv).
(i) Take (5) poling into (9):

$$
\frac{\partial^{2} V}{\partial \varphi_{i} \partial \varphi_{j}}(i)=-\mu^{2}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)<0,(10)
$$

meaning that this is maximum.
(ii) Take (6) \& peng into (9):

$$
\frac{\partial^{2} V}{\partial \varphi_{i} \partial \varphi_{j}}(i i)=\mu^{2}\left(\begin{array}{cc}
\frac{\lambda^{\prime}-\lambda}{2} & 0 \\
0 & 2
\end{array}\right), \text { (11) }
$$

meaning that (ii) is a minium for

$$
\begin{equation*}
\lambda^{\prime}>\lambda \tag{12}
\end{equation*}
$$

(iii) same as (ii), obviously.
(iv) Take (8) ap plug into (9):

$$
\frac{\partial^{2} V}{\partial 0_{i} \partial \varphi_{j}}(i v)=\frac{2 \mu^{2}}{\lambda+\lambda^{\prime}}\left(\begin{array}{ll}
\lambda & \lambda^{\prime} \\
\lambda^{\prime} & \lambda
\end{array}\right) \cdot(13)
$$

The eigenvalus ane

$$
m_{1}^{2}=2 \mu^{2}, \quad m_{2}^{2}=2 \mu^{2} \frac{\lambda-\lambda^{\prime}}{\lambda+\lambda^{\prime}}, \text { (lu) }
$$

so requiring $m_{1}^{2}>0, m_{2}^{2}>0$, we get 117

$$
\lambda>\lambda^{\prime} \quad,(15)
$$

for (iv) to be a minimum.
(1) What happens for $\lambda=\lambda$?

$$
\begin{aligned}
V & =-\frac{\mu^{2}}{2}\left(\varphi_{L}^{2}+\varphi_{R}^{2}\right)+\frac{\lambda}{4}\left(\varphi_{L}+\varphi_{R}^{4}+2 \varphi_{L} \phi_{R}\right) \\
& =-\frac{\mu^{2}}{2}\left(\varphi_{L}^{2}+\varphi_{R}^{2}\right)+\frac{\lambda}{4}\left(\varphi_{L}^{2}+\phi_{k}^{2}\right)^{2} \cdot(16) \\
& =-\mu^{2} X+X+\lambda(X+X)^{2} \rightarrow v(1)
\end{aligned}
$$

with symmetry.

$$
\begin{equation*}
X=\varphi_{L}+i \varphi_{R} \tag{17}
\end{equation*}
$$

Problem 4
(1) Up to dimension fo ar, there are the following invariants:
(a) $\operatorname{Tr}\left(\Delta^{+} \Delta\right)$
(1)
(b) $\operatorname{Tr}^{2}(\Delta+\Delta) \quad$, (2)
(c) $\operatorname{Tr}\left(\Delta^{2}\right) \operatorname{Tr}\left(\Delta^{t}\right)^{2}$
, (3)
(d) $\pi(\Delta+\Delta \Delta+\Delta)$

- (4)
[why do I not include $\operatorname{det} \Delta$, $\operatorname{det} s^{t}$?]
So, (d) is not independent:

$$
\begin{equation*}
\operatorname{Tr}\left(\Delta^{+} \Delta \Delta+\Delta\right)=\operatorname{Tr}^{2}\left(\Delta^{+} \Delta\right)-\frac{1}{2} \operatorname{Tr}\left(\Delta^{2}\right) \operatorname{Tr}\left(\Delta^{+}\right)^{2} \tag{5}
\end{equation*}
$$

Therefore

$$
V=-\mu^{2} \operatorname{Tr}(\Delta+\Delta)+\lambda_{1} \operatorname{Tr}^{2}(\Delta+\Delta)+\lambda_{2} \operatorname{Tr}^{2} \operatorname{Tr} \Delta^{+2}(b)
$$

(2) Take

$$
\begin{equation*}
\Delta=\Delta_{1}+i \Delta_{2} \tag{7}
\end{equation*}
$$

with
$\Delta_{1}, \Delta_{2}=$ Hermitian, ie. $\Delta_{i}^{+}=\Delta_{i}$ (8)
Now $\Delta \rightarrow v \Delta v^{+}=v \Delta, v^{+}+i v \Delta_{2} v^{+} .(a)$

Choose V such that 1 , becomes diagonal \& real ie.

$$
\Delta_{1}=\left(\begin{array}{cc}
a & 0 \tag{11}\\
0 & -a
\end{array}\right)=a \sigma_{3}, a \in \mathbb{R},(10)
$$

and $\sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
Thus,

$$
\Delta=\left(\begin{array}{cc}
a & 0 \\
0 & -a
\end{array}\right)+i v \Delta_{2} v^{+}
$$

Since U diagonalized 1 , it cannot diagonalize Δ_{2} :

$$
\Delta=\left(\begin{array}{cc}
a & 0 \\
0 & -a
\end{array}\right)+i\left(\begin{array}{cc}
b & r e^{-i \phi} \\
r e^{i \phi} & -b
\end{array}\right),(13)
$$

with $b, r, \phi \in \mathbb{R}$. Since, however, $\Delta, \propto \sigma_{3}$, we can rotate both terms by

$$
V_{3}=\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right), \quad, \quad(u)
$$

which will only affect the ind $\sqrt[4 / 17]{17}$ fem:

$$
\Delta=\left(\begin{array}{cc}
a & 0 \\
0 & -a
\end{array}\right)+i\left(\begin{array}{cc}
b & r e^{-i(\varphi-2 \theta)} \\
r e^{i(\varphi-2 \theta} & -b
\end{array}\right) \text { (15) }
$$

meaning that for $\theta=\frac{4}{2}$, we have

$$
\Delta=\left(\begin{array}{cc}
a & 0 \\
0 & -a
\end{array}\right)+i\left(\begin{array}{cc}
b & r \\
r & -b
\end{array}\right) \text {. (16) }
$$

(3) Let's take a from (16)

$$
A=\left(\begin{array}{cc}
z & i r \\
i r & -z
\end{array}\right),(17)
$$

with

$$
\begin{equation*}
z=a+i b \tag{18}
\end{equation*}
$$

Slug (17) into the potential:

$$
\begin{align*}
V=-2 \mu^{2}\left(|z|^{2}\right. & \left.+r^{2}\right)+4 \lambda_{1}\left(|z|^{2}+r^{2}\right)^{2} \\
& +4 \lambda_{2}\left(z^{2}-r^{2}\right)\left(z^{x^{2}}-r^{2}\right) \tag{18}
\end{align*}
$$

For $\lambda_{2}>0$, we find

$$
z=r
$$

meaning that

$$
\Delta=r\left(\begin{array}{rr}
1 & i \tag{20}\\
i & -1
\end{array}\right)
$$

(4) The matrix is vend easy to find by taking

$$
U=\left(\begin{array}{cc}
a & b \tag{21}\\
-b^{*} & a^{*}
\end{array}\right)
$$

and plunging into

$$
\begin{equation*}
V\langle\Delta\rangle v^{+} \tag{22}
\end{equation*}
$$

(5) $Q=T_{3}+\frac{B-L}{2} \cdot(21)$

Then,

$$
\begin{aligned}
Q\left(\begin{array}{ll}
0 & 0 \\
v & 0
\end{array}\right) & =\frac{1}{2}\left[\sigma_{3}, \frac{v}{2}\left(\sigma_{1}-i \sigma_{2}\right)\right]+\left(\begin{array}{cc}
0 & 0 \\
v & 0
\end{array}\right) \\
& =v\left(i \sigma_{2}-\sigma_{1}+\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right)\right)=0
\end{aligned}
$$

(6) Starting from

$$
D_{\mu}\langle\Delta\rangle=-i g \bar{B}_{\mu}\langle\Delta\rangle-i \rho A_{\mu}^{R}\left[T_{R},(\Delta\rangle\right],(23)
$$

we cosily find

$$
\begin{align*}
\operatorname{Tr}\left(D_{\mu}\langle\Delta\rangle^{+} D_{\mu}\langle\Delta\rangle\right) & =g^{2} v^{2} W_{R}^{+} w_{R}^{-} \tag{2u}\\
+ & \left(g^{2}+\bar{g}^{2}\right) v^{2} Z_{R}^{2}
\end{align*}
$$

with

$$
z_{\mu}^{R}=\frac{1}{\sqrt{g^{2}+\bar{g}^{2}}}\left(g A_{\mu}^{3 R}-\bar{g} \bar{B}_{\mu}\right) \text {. (zs) }
$$

Introducing

$$
\sin \theta_{k}=\frac{\bar{g}}{\sqrt{g^{2}+\bar{g}^{2}}}, \cos \theta_{k}=\frac{g}{\sqrt{g^{2}+\bar{g}^{2}}},(26)
$$

eq. (25) yields

$$
z_{\mu}^{R}=\cos \theta_{R} A_{\mu}^{3 R}-\sin \theta_{R} \bar{B}_{\mu} \cdot(2 z)
$$

(7) $\frac{m_{z}^{2}}{m_{w_{\mu}}^{2}}=2 \frac{g^{2}+\bar{g}^{2}}{g^{2}}=2\left(1+\frac{\bar{g}^{2}}{g^{2}}\right)$. (28)
since

$$
\frac{1}{g^{\prime 2}}=\frac{1}{g^{2}}+\frac{1}{\bar{g}^{2}} \quad,(29)
$$

we get

$$
\frac{g^{2}}{\bar{g}^{2}}=\frac{g^{2}}{g^{\prime 2}}-1=\frac{1}{\tan ^{2} \theta_{n}}-1,(30)
$$

meaning that

$$
\frac{m z_{R}^{2}}{m w_{R}^{2}}=\frac{2}{1-\tan ^{2} \theta w}
$$

(8) Take $\lambda_{2}<0$, meaning that

$$
\langle\Delta\rangle=\left(\begin{array}{cc}
0 & i r \\
i r & 0
\end{array}\right)=i r \sigma_{1}, \quad \text { (32) }
$$

thess

$$
\begin{equation*}
\left[\sigma_{1},\langle\Delta\rangle\right]=0 \tag{33}
\end{equation*}
$$

