LMU "Introduction to Physics of Neutrinos" Course 2023
 Prof. Goran Senjanović
 Homework 5

Problem 1

Take the "real" bi-doublet

$$
\Phi=\left(\begin{array}{ll}
\tilde{\phi} & \phi \tag{1}
\end{array}\right)
$$

where ϕ is the Standard Model Higgs doublet

$$
\begin{equation*}
\phi=\binom{\phi^{+}}{\phi^{0}}, \tag{2}
\end{equation*}
$$

and $\tilde{\phi}=i \sigma_{2} \phi^{*}$.
i) Show that

$$
\begin{equation*}
\phi^{\dagger} \phi=\frac{1}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) . \tag{3}
\end{equation*}
$$

ii) Find the most general transformation of Φ that keeps the above expression invariant.
iii) Is the term $\operatorname{det}(\Phi)$ invariant under this transformation?
iv) Use the above results to write down the most general potential for Φ.

Problem 2

Take now a "complex" bi-doublet

$$
\Phi=\left(\begin{array}{ll}
\tilde{\phi}_{1} & \phi_{2} \tag{4}
\end{array}\right),
$$

where $\phi_{i}, i=1,2$, are two Standard Model Higgs doublets

$$
\begin{equation*}
\phi_{i}=\binom{\phi_{i}^{+}}{\phi_{i}^{0}}, \tag{5}
\end{equation*}
$$

and $\tilde{\phi}_{i}=i \sigma_{2} \phi_{i}^{*}$.
i) Compute

$$
\begin{equation*}
\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \tag{6}
\end{equation*}
$$

and show that it is invariant under the Standard Model $\mathrm{SU}(2)_{\mathrm{L}}$ symmetry.
ii) What is the maximal symmetry of the above?
iii) Write down the most general potential for Φ invariant under this symmetry. Keep terms which are at most quartic in the fields.
iv) Should a term proportional to $\operatorname{det}(\Phi)$ be included?
v) Define $\tilde{\Phi}=i \sigma_{2} \Phi^{*} i \sigma_{2}$. Show that

$$
\tilde{\Phi}=\left(\begin{array}{ll}
\tilde{\phi}_{2} & \phi_{1} \tag{7}
\end{array}\right) .
$$

vi) Compute

$$
\begin{equation*}
\Phi^{\dagger} \Phi+\tilde{\Phi}^{\dagger} \tilde{\Phi} \tag{8}
\end{equation*}
$$

and prove it is invariant under $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{SU}(2)_{\mathrm{R}}$.
vii) Compute

$$
\begin{equation*}
\operatorname{Tr}\left(\Phi^{\dagger} \tilde{\Phi}\right) \tag{9}
\end{equation*}
$$

and compare with $\operatorname{det}(\Phi)$.
viii) Write down the independent invariants depending on Φ. How many are there?

Problem 3

Take two real scalar fields ϕ_{L} and ϕ_{R} connected by parity, i.e. $\phi_{L} \leftrightarrow \phi_{R}$. Assuming no linear terms, the most general potential reads

$$
\begin{equation*}
V=-\frac{\mu^{2}}{2}\left(\phi_{L}^{2}+\phi_{R}^{2}\right)+\frac{\lambda}{4}\left(\phi_{L}^{4}+\phi_{R}^{4}\right)+\frac{\lambda^{\prime}}{2} \phi_{L}^{2} \phi_{R}^{2}, \tag{10}
\end{equation*}
$$

with $\mu, \lambda, \lambda^{\prime}>0$.

1. Find all possible extrema of V.
2. Show that for $\lambda>\lambda^{\prime}$, the minimum corresponds to $\left\langle\phi_{L}\right\rangle=0,\left\langle\phi_{R}\right\rangle \neq 0$, or vice versa. Prove that by computing explicitly the masses of the physical states.
3. Show that for $\lambda^{\prime}>\lambda$, the minimum is for $\left\langle\phi_{L}\right\rangle=\left\langle\phi_{R}\right\rangle \neq 0$. Again, compute explicitly the masses of the physical states.

Problem 4

Consider two $S U(2)_{L}$ and $S U(2)_{R}$ triplets Δ_{L} and Δ_{R} with $B-L=2$. Take the field Δ_{R}-called Δ hereafter-and study the resulting breaking.

In other words, we have

$$
\begin{equation*}
G=S U(2)_{R} \times U(1)_{B-L}, \tag{11}
\end{equation*}
$$

with $(B-L) \Delta=2 \Delta$, and Δ transforming under $S U(2)$ as

$$
\begin{equation*}
\Delta \mapsto U \Delta U^{+}, \tag{12}
\end{equation*}
$$

with

$$
\begin{equation*}
U=e^{i \boldsymbol{\theta} \cdot \vec{\sigma} / 2} \tag{13}
\end{equation*}
$$

Note also that

$$
\begin{equation*}
\operatorname{Tr} \Delta=0 . \tag{14}
\end{equation*}
$$

Since the $U(1)$ charge of Δ is 2 , it cannot be a hermitian field, i.e. $\Delta^{+} \neq \Delta$.

1. Show that the most general potential reads

$$
\begin{equation*}
V=-\mu^{2} \operatorname{Tr} \Delta^{+} \Delta+\lambda_{1}\left(\operatorname{Tr} \Delta^{+} \Delta\right)^{2}+\lambda_{2}\left(\operatorname{Tr} \Delta^{2}\right)\left(\operatorname{Tr} \Delta^{+2}\right) \tag{15}
\end{equation*}
$$

Hint: Show that the term $\operatorname{Tr} \Delta^{+} \Delta \Delta^{+} \Delta$ is not independent.
2. Show that

$$
\langle\Delta\rangle=\left(\begin{array}{cc}
z & i r \tag{16}\\
i r & -z
\end{array}\right), \quad z \in \mathbb{C}, \quad r \in \mathbb{R} .
$$

To this end, effectuate the following steps:
(a) Write $\Delta=\Delta_{1}+i \Delta_{2}$, with $\Delta_{i}^{+}=\Delta_{i}, i=1,2$.

Use the freedom $\Delta_{1} \mapsto U \Delta_{1} U^{+}$to show that we can write

$$
\left\langle\Delta_{1}\right\rangle=\left(\begin{array}{cc}
a & 0 \tag{17}\\
0 & -a
\end{array}\right), \quad a \in \mathbb{R}
$$

(b) Show that $\left\langle\Delta_{1}\right\rangle$ leaves intact the $U(1)$ symmetry generated by

$$
U_{3}=\left(\begin{array}{cc}
e^{i \theta} & 0 \tag{18}\\
0 & e^{-i \theta}
\end{array}\right)
$$

(c) Using the remaining U_{3} freedom show that Δ_{2} can be written as

$$
\Delta_{2}=\left(\begin{array}{cc}
b & r \tag{19}\\
r & -b
\end{array}\right), \quad b, r \in \mathbb{R}
$$

3. Find under which conditions one can obtain

$$
\langle\Delta\rangle=r\left(\begin{array}{cc}
1 & i \tag{20}\\
i & -1
\end{array}\right) .
$$

4. Find the $S U(2)$ transformation U that yields

$$
U\langle\Delta\rangle U^{+}=v\left(\begin{array}{ll}
0 & 0 \tag{21}\\
1 & 0
\end{array}\right) .
$$

Express v in terms of r.
5. Show that the form of (12) conserves the charge

$$
\begin{equation*}
Q=T_{3}+\frac{Y}{2} . \tag{22}
\end{equation*}
$$

6. With (12) show that the neutral gauge boson Z_{R} has the form we found in Lecture XII.
7. Prove that

$$
\begin{equation*}
M_{Z_{R}}^{2}=2 \frac{M_{W_{R}}^{2}}{1-\tan ^{2} \theta_{W}} \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
\tan \theta_{W}=\frac{g^{\prime}}{g} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{g^{\prime 2}}=\frac{1}{g^{2}}+\frac{1}{\bar{g}^{2}} \tag{25}
\end{equation*}
$$

8. Complete the pattern of possible symmetry breaking, i.e. find other possible minima. Show that in every case there is a residual $U(1)$ symmetry.
