Ludwig-Maximilians-Universität München

SOLUTIONS TO

QCD and Standard Model

Prof. Dr. Georgi Dvali
Assistants: Oleg Kaikov, Dr. Georgios Karananas, Otari Sakhelashvili
$1^{\text {st }}$ August 2022
\section*{Guidelines:}

- The exam consists of 7 problems. Out of Problems 1-6 you need to solve five, the remaining one is a bonus. Problem 7 has to be solved.
- The duration of the exam is 72 hours.
- Please write your name or matriculation number on every sheet that you hand in.
- Your answers should be comprehensible and readable.

GOOD LUCK!

Problem 1	20 P
Problem 2	20 P
Problem 3	20 P
Problem 4	20 P
Problem 5	20 P
Problem 6	20 P
Problem 7	10 P

Total	110 P
Bonus	20 P

Problem 1 (20 points)

a) Solution $[16 \mathrm{P}]$

$$
\begin{align*}
\mathcal{L} & =\operatorname{tr}\left[\left(\partial_{\mu} X\right)^{\dagger}\left(\partial^{\mu} X\right)\right]+\operatorname{tr}\left[\left(\partial_{\mu} Y\right)^{\dagger}\left(\partial^{\mu} Y\right)\right]-V \\
V & =m_{X}^{2} \operatorname{tr}\left[X^{\dagger} X\right]+m_{Y}^{2} \operatorname{tr}\left[Y^{\dagger} Y\right]+\lambda_{1}\left(\operatorname{tr}\left[X^{\dagger} X\right]\right)^{2}+\lambda_{2}\left(\operatorname{tr}\left[Y^{\dagger} Y\right]\right)^{2}+ \\
& +\lambda_{3} \operatorname{tr}\left[\left(X^{\dagger} X\right)^{2}\right]+\lambda_{4} \operatorname{tr}\left[\left(Y^{\dagger} Y\right)^{2}\right]+\lambda_{5} \operatorname{tr}\left[X^{\dagger 2} X^{2}\right]+\lambda_{6} \operatorname{tr}\left[Y^{\dagger 2} Y^{2}\right]+ \\
& +\lambda_{7} \operatorname{tr}\left[X^{\dagger} X\right] \operatorname{tr}\left[Y^{\dagger} Y\right]+\lambda_{8}\left(\operatorname{tr}\left[X^{\dagger} Y^{3}\right]+\operatorname{tr}\left[X Y^{\dagger 3}\right]\right)+\lambda_{9} \operatorname{tr}\left[X^{\dagger} X Y^{\dagger} Y\right]+ \tag{1}\\
& +\lambda_{10} \operatorname{tr}\left[X^{\dagger} X Y Y^{\dagger}\right]+\lambda_{11}\left(\operatorname{tr}\left[X^{\dagger} Y^{\dagger} X Y\right]+\operatorname{tr}\left[X^{\dagger} Y X Y^{\dagger}\right]\right) \\
& +\lambda_{12} \operatorname{tr}\left[X^{\dagger} Y^{\dagger} Y X\right]+\lambda_{13} \operatorname{tr}\left[X^{\dagger} Y Y^{\dagger} X\right]+\lambda_{14} \operatorname{tr}\left[X^{2}\right] \operatorname{tr}\left[X^{\dagger 2}\right]+\lambda_{15} \operatorname{tr}\left[Y^{2}\right] \operatorname{tr}\left[Y^{\dagger 2}\right]+ \\
& +\lambda_{16} \operatorname{tr}[X Y] \operatorname{tr}\left[X^{\dagger} Y^{\dagger}\right]+\lambda_{17} \operatorname{tr}\left[X Y^{\dagger}\right] \operatorname{tr}\left[X^{\dagger} Y\right]+\lambda_{18}\left(\operatorname{tr}\left[X Y^{\dagger}\right] \operatorname{tr}\left[Y^{\dagger 2}\right]+\operatorname{tr}\left[X^{\dagger} Y\right] \operatorname{tr}\left[Y^{2}\right]\right)
\end{align*}
$$

b) Solution $[4 \mathrm{P}]$

Define

$$
\begin{align*}
X \equiv X^{a} T^{a}, & X^{\dagger} \equiv\left(X^{*}\right)^{a} T^{a} \\
Y \equiv Y^{a} T^{a}, & Y^{\dagger} \equiv\left(Y^{*}\right)^{a} T^{a} \tag{2}
\end{align*}
$$

and use

$$
\begin{align*}
\operatorname{tr}\left[T^{a} T^{b}\right] & =\frac{1}{2} \delta^{a b} \\
\operatorname{tr}\left[T^{a} T^{b} T^{c} T^{d}\right] & =\frac{1}{4 N} \delta^{a b} \delta^{c d}+\frac{1}{8}\left(d^{a b e} d^{c d e}-f^{a b e} f^{c d e}+i f^{a b e} d^{c d e}+i f^{c d e} d^{a b e}\right) \tag{3}
\end{align*}
$$

to obtain the EOMs for $Z^{a},\left(Z^{*}\right)^{a}$, where $Z=X, Y$, from the Euler-Lagrange equations

$$
\begin{equation*}
\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} Z^{a}\right)}-\frac{\partial \mathcal{L}}{\partial Z^{a}}=0 \tag{4}
\end{equation*}
$$

Problem 2 (20 points)

Solution [4 P]

Proton decay violates baryon number. The lowest dimension for an operator leading to proton decay is 6 , as such an operator must contain at least 4 fermion fields; there are no such dimension 4 or 5 operators.

Solution [16 P]
There are four dimension-six operators:

$$
\begin{align*}
& \left(q_{L}^{T} C i \sigma_{2} q_{L}\right)\left(q_{L}^{T} C i \sigma_{2} l_{L}\right) \\
& \left(q_{L}^{T} C i \sigma_{2} q_{L}\right)\left(u_{R}^{T} C e_{R}\right) \\
& \left(q_{L}^{T} C i \sigma_{2} l_{L}\right)\left(u_{R}^{T} C d_{R}\right) \tag{5}\\
& \left(u_{R}^{T} C e_{R}\right)\left(u_{R}^{T} C d_{R}\right)
\end{align*}
$$

Problem 3

- Solution [13 P]

We have seen that a general CKM matrix has

$$
\begin{align*}
& \frac{N(N-1)}{2} \text { rotations, } \\
& \frac{N^{2}-3 N+2}{2} \text { phases, } \tag{6}
\end{align*}
$$

with N the number of generations. For $N=3$, we get 1 phase and 3 rotations. In the case at hand, the mass matrix (after diagonalization) has the following form

$$
m=\left(\begin{array}{rr}
\mu_{1}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & 0 \tag{7}\\
0 & \\
\mu_{2}
\end{array}\right) .
$$

Since the upper block is diagonal, it is invariant under $U(2)$ rotations. Hence, one rotation and the phase are not physical. So, the resulting CKM matrix has two rotations only. This result can be easily deducted from the explicit form of $V_{C K M}$ matrix.

- Solution [7 P]

The CKM matrix is connected to mass diagonalization matrices as follows

$$
\begin{equation*}
V_{C K M}=U_{u}^{+} U_{d} . \tag{8}
\end{equation*}
$$

If for instance d 's are massless, then U_{d} is arbitrary, we can choose $U_{d}=U_{u}$ and $V_{C K M}=1$.

Problem 4 (20 points)

a) Solution $[6 \mathrm{P}]$

$$
\tilde{H}=\binom{h^{0 *}}{-h^{+*}} \Rightarrow \Phi=\left(\begin{array}{cc}
h^{0 *} & h^{+} \tag{9}\\
-h^{+*} & h^{0}
\end{array}\right)
$$

b) Solution $[8 \mathrm{P}]$

$$
\begin{equation*}
H^{\dagger} H=h^{+*} h^{+}+h^{0 *} h^{0}=\frac{1}{2} \operatorname{tr}\left[\Phi^{\dagger} \Phi\right]=\operatorname{det}[\Phi] \tag{10}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
V=-\frac{\mu^{2}}{2} \operatorname{tr}\left[\Phi^{\dagger} \Phi\right]+\frac{\lambda}{4}\left(\operatorname{tr}\left[\Phi^{\dagger} \Phi\right]\right)^{2}=-\mu^{2} \operatorname{det}[\Phi]+\lambda(\operatorname{det}[\Phi])^{2} \tag{11}
\end{equation*}
$$

c) Solution $[6 \mathrm{P}]$

$$
\begin{equation*}
\Phi \rightarrow U_{L} \Phi U_{R}^{\dagger}, \quad\left(U_{L}, U_{R}\right) \in S U(2)_{L} \times S U(2)_{R} \cong S O(4) \tag{12}
\end{equation*}
$$

Problem 5

Solution [20 P] We can choose

$$
\begin{equation*}
<H>=\binom{0}{v} . \tag{13}
\end{equation*}
$$

In that case, the electric charge acts on it as

$$
\begin{equation*}
Q<H>=\left(\frac{\tau_{3}}{2}+\frac{Y_{H}}{2}\right)\binom{0}{v} . \tag{14}
\end{equation*}
$$

Requiring that the above vanishes, we get $Y_{H}=1$, which makes the photon massless. Now let us require that

$$
\begin{equation*}
Q S=Y_{S} S=0 \tag{15}
\end{equation*}
$$

or otherwise the photon gets mass from the second Higgs. We have 2 choices, we should choose $Y_{S}=0$, or $g^{\prime}=0$. The first decouples the new field, while the second spoils SM.

Problem 6

- Solution [6 P]

$$
\begin{equation*}
\bar{q} i \not D q_{q}=\bar{q}_{L} i \not D q_{L}+\bar{q}_{R} i \not D q_{R}, \tag{16}
\end{equation*}
$$

which has the symmetry $U(N)_{L} \times U(N)_{R}$.

- Solution [6 P] $\operatorname{tr} F_{\mu \nu} F_{\alpha \beta}$ is a tensor, but $\epsilon_{\mu \nu \alpha \beta}$ is an axial tensor. Under the Lorenz transformations (O) it transforms in the following way

$$
\begin{equation*}
\epsilon \rightarrow \Delta(O) \epsilon \tag{17}
\end{equation*}
$$

where Δ is a determinant. In the case of Lorenz transformations,

$$
\begin{equation*}
\Delta O= \pm 1 \tag{18}
\end{equation*}
$$

We get -1 for the P and T transformations. Due to $C P T$-theorem, T transformation is the same as $C P$ transformation, hence the above term breaks P and $C P$.

- Solution [8 P] The total action is the sum of YM and θ actions.

$$
\begin{equation*}
S=S_{Y M}+S_{\theta} \tag{19}
\end{equation*}
$$

If we do variation of the first part, we get the standard equations of motion. The variation of second part has the form

$$
\begin{equation*}
\delta S_{\theta}=2 \theta \int d^{4} x \epsilon_{\mu \nu \alpha \beta} \operatorname{Tr} F_{\mu \nu} \delta F_{\alpha \beta}, \tag{20}
\end{equation*}
$$

which after integration by parts simplifies to

$$
\begin{equation*}
\delta S_{\theta}=-4 \theta \int d^{4} x \epsilon_{\mu \nu \alpha \beta} D_{\alpha} F_{\mu \nu} \delta A_{\beta} \tag{21}
\end{equation*}
$$

since $D_{[\alpha} F_{\mu \nu]}=0$, the above expression does not contribute to the equations of motions.

Problem 7 (10 points)

1. Solution [5 P]
$\frac{1}{M}\left(\partial_{\mu} \phi\right) \bar{\psi} \gamma^{\mu} \psi$ preserves parity
2. Solution [5 P]
$\frac{1}{M}\left(\partial_{\mu} \phi\right) \bar{\psi} \gamma^{\mu} \gamma^{5} \psi$ breaks parity
