Ludwig-Maximilians-Universität München

QCD and Standard Model

Prof. Dr. Georgi Dvali

Assistants : Dr. Georgios Karananas, Emmanouil Koutsangelas, Max Warkentin

2 October 2020

Guidelines :

- The exam consists of 7 problems.
- The duration of the exam is 4 hours.
- Please write your name or matriculation number on every sheet that you hand in.
- Your answers should be comprehensible and readable.

GOOD LUCK!

Exercise 1	9 P
Exercise 2	23 P
Exercise 3	13 P
Exercise 4	9 P
Exercise 5	20 P
Exercise 6	16 P
Exercise 7	10 P

Total 100 P

Problem 1 (9 points)

Consider the following Lagrangian of a real scalar field Φ in 4 spacetime dimensions

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \Phi \partial^{\mu} \Phi + \frac{m^2}{2} \Phi^2 - \frac{\lambda}{4} \Phi^4 ,$$

with $m^2, \lambda > 0$.

- a) What is the symmetry of the above Lagrangian?
- b) Minimize the potential and determine the ground state of the system. Is the symmetry broken spontaneously?
- c) How many Goldstone bosons are in the spectrum ? Justify your answer.

Problem 2 (23 points)

Consider a theory invariant under a local SU(2) symmetry with a scalar field in the adjoint representation of the group, i.e., $\phi = \sum_{i=1}^{3} \phi^{i} T^{i}$, where the ϕ^{i} 's are real and T^{i} 's the Hermitian generators of SU(2).

- a) Write down the most general renormalizable gauge SU(2)- and Lorentz-invariant Lagrangian in four spacetime dimensions.
- b) Arrange the potential such that the vacuum expectation value (vev) of the scalar field is non-zero. Find the vev by explicitly minimizing the potential.
- c) What is the unbroken symmetry group? How many gauge bosons acquire a mass and how many remain massless? Justify your answer.
- d) Determine the masses of the gauge bosons.
- e) Can this model alone describe the gauge electroweak interactions? Justify your answer.

Problem 3 (13 points)

 a) Add a right-handed neutrino to the Lagrangian of the SM, which only has a Majorana mass term. Write down the corresponding Lagrangian. Does this particle conserve lepton number? Verify your statement by an explicit calculation.

- b) Is a Majorana mass term invariant under parity transformations? Verify your statement by an explicit calculation. *Hint : Do not forget the phase.*
- c) Draw a Feynman diagram for the process $n + n \rightarrow p + p + e^- + e^-$. Can this process happen within the SM (including the above modification)?

Problem 4 (9 points)

- a) Draw two tree-level Feynman diagrams that describe the decay of the Higgs particle to the W and Z gauge bosons (one each).
- b) Are these processes kinematically allowed?
- c) Write down the interaction vertex governing the Higgs- W^+W^- coupling.

Problem 5 (20 points)

Let us focus on the fermionic sector of the SM (without right-handed neutrinos).

- a) Set all the Yukawa couplings to zero. What is the global symmetry group in this case (apart from the gauged $SU(2) \times U(1)$)?
- b) Assume that the Yukawa couplings are non-zero diagonal matrices. What is the global symmetry group in this case?

Problem 6 (16 points)

Consider the following Lagrangian of a complex scalar field ϕ in 4 spacetime dimensions

$$\mathcal{L} = \partial_{\mu}\phi^*\partial^{\mu}\phi + m^2\phi^*\phi - \lambda(\phi^*\phi)^2 + \mu^2(\phi^* + \phi)^2 .$$

Here $m^2, \lambda, \mu^2 > 0$ and $\mu \ll m$ are real parameters.

- a) Determine the ground state of the theory.
- b) Find the masses of the particles when the Lagrangian is expanded around the vacuum.

c) What happens in the limit $\mu \to 0\,?$ Why ? Explain.

Problem 7 (10 points)

Let us assume that in the Standard Model there are two Higgs doublets H^1 and H^2 with the same hypercharge as the conventional Higgs. Let the fields take the following vacuum expectation values

$$H_0^1 = \begin{pmatrix} 0\\v_1 \end{pmatrix}$$
, $H_0^2 = \begin{pmatrix} v_2\\0 \end{pmatrix}$.

- a) Write down the unbroken generators, if there are any.
- b) What is the unbroken group?
- c) How many gauge bosons acquire mass and how many remain mass-less?