Ludwig-Maximilians-Universität München

QCD and Standard Model
 Exam Solution

Prof. Dr. Georgi Dvali
Assistants : Dr. Georgios Karananas, Emmanouil Koutsangelas, Max Warkentin

2 October 2020

Guidelines :

- The exam consists of 7 problems.
- The duration of the exam is 4 hours.
- Please write your name or matriculation number on every sheet that you hand in.
- Your answers should be comprehensible and readable.
GOOD LUCK!

Exercise 1	9 P
Exercise 2	23 P
Exercise 3	13 P
Exercise 4	9 P
Exercise 5	20 P
Exercise 6	16 P
Exercise 7	10 P

Total 100 P

Problem 1 (9 points)

Consider the following Lagrangian of a real scalar field Φ in 4 spacetime dimensions

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \Phi \partial^{\mu} \Phi+\frac{m^{2}}{2} \Phi^{2}-\frac{\lambda}{4} \Phi^{4}
$$

with $m^{2}, \lambda>0$.
a) (2pts) What is the symmetry of the above Lagrangian?

Answer : Since the scalar is real, the Lagrangian is invariant under

$$
\Phi \rightarrow-\Phi .
$$

b) (4pts) Minimize the potential and determine the ground state of the system. Is the symmetry broken spontaneously? (1pt for each minimum +2 pts for SSB)
Answer: The potential is minimized by

$$
\langle\Phi\rangle= \pm \sqrt{\frac{m^{2}}{\lambda}} \equiv \pm v
$$

Since the VEV of Φ is non-zero, the symmetry is broken spontaneously.
c) (3pts) How many Goldstone bosons are in the spectrum? Justify your answer. (1pt for Goldstones number +2 pts for justification)
Answer : Since no continuous symmetry is broken, there are no Goldstone bosons.

Problem 2 (23 points)

Consider a theory invariant under a local $\operatorname{SU}(2)$ symmetry with a scalar field in the adjoint representation of the group, i.e. $\phi=\sum_{i=1}^{3} \phi^{i} T^{i}$, where the ϕ^{i}, S are real and T^{i} 's the Hermitian generators of $\mathrm{SU}(2)$.
a) (5pts)Write down the most general renormalizable $\mathrm{SU}(2)$ - and Lorentzinvariant Lagrangian in four spacetime dimensions.(1pt for each term +1 pt for covariant derivative)
Answer : The most general gauge invariant \& renormalizable Lagrangian reads

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{2} \operatorname{Tr}\left(F_{\mu \nu} F^{\mu \nu}\right)+\operatorname{Tr}\left[\left(D_{\mu} \phi\right)^{\dagger} D^{\mu} \phi\right]+m^{2} \operatorname{Tr}\left(\phi^{2}\right)-\lambda\left(\operatorname{Tr}(\phi)^{2}\right)^{2}, \tag{1}
\end{equation*}
$$

where the covariant derivative for the field in the adjoint representation reads

$$
\begin{equation*}
D_{\mu} \phi=\partial_{\mu} \phi-i g\left[A_{\mu}, \phi\right] \tag{2}
\end{equation*}
$$

and as usual the square brackets $[\cdot, \cdot]$ stand for the commutator.
b) (4 pts) Arrange the potential such that the vacuum expectation value (vev) of the scalar field is non-zero. Find the vev by explicitly minimizing the potential. (2pts for coefficients +2 pts for vev)
Answer: The potential that allows for spontaneous symmetry breaking reads

$$
\begin{equation*}
V(\phi)=-m^{2} \operatorname{Tr}\left(\phi^{2}\right)+\lambda\left(\operatorname{Tr}\left(\phi^{2}\right)\right)^{2}, \tag{3}
\end{equation*}
$$

with $m^{2}, \lambda>0$. Taking the derivative w.r.t. ϕ, we obtain

$$
\begin{equation*}
V^{\prime}(\phi)=-2 m^{2} \phi+4 \lambda \operatorname{Tr}\left(\phi^{2}\right) \phi . \tag{4}
\end{equation*}
$$

We now require that for $\phi=\phi_{0} \neq 0$ the above vanishes. This is the case for

$$
\begin{equation*}
\operatorname{Tr}\left(\phi_{0}^{2}\right)=\frac{m^{2}}{2 \lambda} \tag{5}
\end{equation*}
$$

Since the field lives in the adjoint of the group, we have

$$
\phi=\sum_{i=1}^{3} \phi^{i} T^{i}=\frac{1}{2}\left(\begin{array}{cc}
\phi^{3} & \phi^{1}-i \phi^{2} \tag{6}\\
\phi^{1}+i \phi^{2} & -\phi^{3}
\end{array}\right),
$$

and we immediately find

$$
\begin{equation*}
\left(\phi_{0}^{1}\right)^{2}+\left(\phi_{0}^{2}\right)^{2}+\left(\phi_{0}^{3}\right)^{2}=\frac{m^{2}}{\lambda} . \tag{7}
\end{equation*}
$$

Without loss of generality (due to the $\mathrm{SU}(2)$ symmetry), we may choose $\phi_{0}^{1}=\phi_{0}^{2}=0$ and $\phi_{0}^{3}=\frac{m}{\sqrt{\lambda}}$, meaning that

$$
\phi_{0}=\frac{v}{2}\left(\begin{array}{cc}
1 & 0 \tag{8}\\
0 & -1
\end{array}\right),
$$

with $v=\frac{m}{\sqrt{\lambda}}$. To verify that this saddle point corresponds to a (local) minimum, we take the second derivative of the potential

$$
\left.V^{\prime \prime}(\phi)\right|_{\phi=\phi_{0}}=2 m^{2}\left(\begin{array}{lll}
0 & 0 & 0 \tag{9}\\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

c) (5 pts)What is the unbroken symmetry group? How many gauge bosons acquire a mass and how many remain massless? Justify your answer. (3pts for $\mathrm{U}(1)+2 \mathrm{pts}$ for spectrum)
Answer: To find the unbroken symmetry group, we have to study the action of the generators on the vev ϕ_{0}. Since the field lives in the adjoint, we have to consider its commutators with the generators :

$$
\begin{align*}
& {\left[\phi_{0}, T^{1}\right]=v\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),} \\
& {\left[\phi_{0}, T^{2}\right]=-i v\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),} \tag{10}\\
& {\left[\phi_{0}, T^{3}\right]=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .}
\end{align*}
$$

The unbroken symmetry group is therefore $\mathrm{U}(1)$. Out of the 3 gauge bosons, two will get a mass and one will be massless.
d) (6 pts) Determine the masses of the gauge bosons. (3 pts for formula +3 pts for result)
Answer: The masses of the gauge bosons are generated via the covariant derivative of the scalar field and more specifically from the term

$$
\begin{equation*}
\operatorname{Tr}\left(\left[A_{\mu}, \phi_{0}\right]\left[A_{\mu}, \phi_{0}\right]\right)=\frac{g^{2} v^{2}}{2}\left(\left(A_{\mu}^{1}\right)^{2}+\left(A_{\mu}^{2}\right)^{2}\right), \tag{11}
\end{equation*}
$$

meaning that the masses of the physical gauge bosons $W_{\mu}^{ \pm}=\frac{1}{\sqrt{2}}\left(A_{\mu}^{1} \mp\right.$ A_{μ}^{2}) are equal to $g v$, while the mass of A_{μ}^{3} is zero. The above is of course in agreement with our expectation that only two of the gauge bosons will acquire a mass, while the third will remain massless.
e) (3pts) Can this model alone describe the gauge electroweak interactions? Justify your answer.(1pt for answer +2 for justification)
Answer: This model alone cannot describe the gauge electroweak sector of the Standard Model, because it cannot account for the Z boson.

Problem 3 (13 points)

a) (4pts) Add a right-handed neutrino to the Lagrangian of the SM, which only has a Majorana mass term. Write down the corresponding Lagrangian. Does this particle conserve lepton number? Verify your statement by an explicit calculation. (1pt for kinetic +1 pt for mass +

1 pt for lepton number +1 pt for justification)
Answer :

$$
\mathcal{L}_{\text {add }}=i \bar{\nu}_{R} \gamma^{\mu} \partial_{\mu} \nu_{R}-\frac{1}{2} m_{M}\left(\nu_{R}^{T} C \nu_{R}+\text { h.c. }\right),
$$

where ν_{R} is the right-handed neutrino and $C=i \gamma^{2} \gamma^{0}$ is the charge conjugation matrix.
Since ν_{R} is a lepton, it transforms under $U(1)_{\text {lepton }}$ as

$$
\nu_{R} \rightarrow e^{i \alpha} \nu_{R}
$$

But then, the above mass term is not invariant :

$$
\nu_{R}^{T} C \nu_{R} \rightarrow e^{2 i \alpha} \nu_{R}^{T} C \nu_{R}
$$

so lepton number is not conserved.
b) (3pts) Is a Majorana mass term invariant under parity transformations? Verify your statement by an explicit calculation. (1pt for answer +2 pts for computation)
Hint : Do not forget the phase.
Answer: A Majorana fermion transforms under parity as

$$
\nu_{R}(x) \xrightarrow{P} i \gamma^{0} \nu_{R}\left(x^{\prime}\right),
$$

where $x^{\prime}=(t,-\vec{x})$. So the mass term transforms as

$$
\nu_{R}^{T}(x) C \nu_{R}(x) \rightarrow(i)^{2} \nu_{R}^{T}\left(x^{\prime}\right) \gamma^{0} \underbrace{C \gamma^{0}}_{-\gamma^{0} C} \nu_{R}\left(x^{\prime}\right)=\nu_{R}^{T}\left(x^{\prime}\right) C \nu_{R}\left(x^{\prime}\right)
$$

Hence the action (after performing $x^{\prime} \rightarrow x$) is invariant.
c) (6pts) Draw a Feynman diagram for the process $n+n \rightarrow p+p+$ $e^{-}+e^{-}$. Can this process happen within the SM (including the above modification)? (4pts for diagram +2 pts for answering)
Answer :

Yes, the process can happen, because ν_{R} is a Majorana particle and hence lepton number is not conserved.

Problem 4 (9 points)

a) (4pts) Draw two tree-level Feynman diagrams that describe the decay of the Higgs particle to the W and Z gauge bosons (one each).(2pts for each diagram)
Answer :

b) (3pts)Are these processes kinematically allowed?

Answer: No, because $m_{h} \simeq 126 \mathrm{GeV}, m_{W} \simeq 80 \mathrm{GeV}$ and $m_{Z} \simeq$ 91 GeV , so the Higgs cannot decay into any of the two on-shell.
c) (2pts) Write down the interaction vertex governing the Higgs- $W^{+} W^{-}$ coupling.
Answer : If we write the Higgs doublet as $H=\frac{1}{\sqrt{2}}\binom{0}{v+h}$ (in unitary gauge), the kinetic term $\left(D_{\mu} H\right)^{\dagger} D^{\mu} H$ in the SM Lagrangian contains
the term

$$
\frac{2 m_{W}^{2}}{v} h W_{\mu}^{+} W^{-\mu}
$$

From this we can read off the vertex

Problem 5 (20 points)

Let us focus on the fermionic sector of the SM (without right-handed neutrinos).
a) (10pts)Set all the Yukawa couplings to zero. What is the global symmetry group in this case (apart from the gauged $S U(2) \times U(1)$)? (5pts for result (2.5 if only subgroups or less symmetries +5 pts for justification))
Answer: Setting all Yukawa coupling to zero, the fermionic sector only consists of kinetic terms, i.e.,

$$
\begin{aligned}
\mathcal{L}_{\mathrm{F}}= & \left(Q_{L}\right)^{a} i \gamma^{\mu} D_{\mu}\left(Q_{L}\right)_{a}+\left(u_{R}\right)^{a} i \gamma^{\mu} D_{\mu}\left(u_{R}\right)_{a}+\left(d_{R}\right)^{a} i \gamma^{\mu} D_{\mu}\left(d_{R}\right)_{a} \\
& +\left(L_{L}\right)^{a} i \gamma^{\mu} D_{\mu}\left(L_{L}\right)_{a}+\left(e_{R}\right)^{a} i \gamma^{\mu} D_{\mu}\left(e_{R}\right)_{a},
\end{aligned}
$$

where $a=1,2,3$ is a generation and D_{μ} is the standard covariant derivative for the corresponding fermionic field. In this form we can see that the Lagrangian is invariant under

$$
\begin{array}{r}
\left(Q_{L}\right)^{a} \longrightarrow\left(U_{Q_{L}}\right)_{b}^{a}\left(Q_{L}\right)^{b} \\
\left(u_{R}\right)^{a} \longrightarrow\left(U_{u_{R}}\right)_{b}^{a}\left(u_{R}\right)^{b} \\
\left(d_{R}\right)^{a} \longrightarrow\left(U_{d_{R}}\right)_{b}^{a}\left(d_{R}\right)^{b} \\
\left(L_{L}\right)^{a} \longrightarrow\left(U_{L_{L}}\right)_{b}^{a}\left(L_{L}\right)^{b} \\
\left(e_{R}\right)^{a} \longrightarrow\left(U_{e_{R}}\right)_{b}^{a}\left(e_{R}\right)^{b},
\end{array}
$$

where $U_{Q_{L}}, U_{u_{R}}, U_{d_{R}}, U_{L_{L}}, U_{e_{R}} \in \mathrm{U}(3)$ and independent of each other. Thus, the global Flavor symmetry is

$$
G_{\mathrm{F}}=\mathrm{U}(3)_{Q_{L}} \times \mathrm{U}(3)_{u_{R}} \times \mathrm{U}(3)_{d_{R}} \times \mathrm{U}(3)_{L_{L}} \times \mathrm{U}(3)_{e_{R}}
$$

b) (10pts) Assume that the Yukawa couplings are non-zero diagonal matrices. What is the global symmetry group in this case? (5pts for result (2.5 if only subgroups or less symmetries +5 pts for justification))

Answer : The Yukawa terms are

$$
\begin{aligned}
\mathcal{L}_{\mathrm{Y}}= & -H\left(y^{(d)}\right)_{a b}\left(\bar{Q}_{L}\right)^{a}\left(d_{R}\right)^{b}-\tilde{H}\left(y^{(u)}\right)_{a b}\left(\bar{Q}_{L}\right)^{a}\left(u_{R}\right)^{b} \\
& -\tilde{H}\left(y^{(e)}\right)_{a b}\left(\bar{L}_{L}\right)^{a}\left(e_{R}\right)^{b}+\text { h.c. } .
\end{aligned}
$$

We want to stress that the Yukawa matrices are taken to be nonzero diagonal matrices. In this case, the flavor symmetry is explicitly broken down to the vectorlike subgroups

$$
\begin{equation*}
\mathrm{U}(1)_{Q^{1}} \times \mathrm{U}(1)_{Q^{2}} \times \mathrm{U}(1)_{Q^{3}} \times \mathrm{U}(1)_{e^{1}} \times \mathrm{U}(1)_{e^{2}} \times \mathrm{U}(1)_{e^{3}} \tag{12}
\end{equation*}
$$

i.e,

$$
\begin{aligned}
\left(Q_{L}\right)^{a} & \longrightarrow \exp \left(i \alpha^{(a)}\right)\left(Q_{L}\right)^{a} \\
\left(u_{R}\right)^{a} & \longrightarrow \exp \left(i \alpha^{(a)}\right)\left(u_{R}\right)^{a} \\
\left(d_{R}\right)^{a} & \longrightarrow \exp \left(i \alpha^{(a)}\right)\left(d_{R}\right)^{a} \\
\left(L_{L}\right)^{a} & \longrightarrow \exp \left(i \beta^{(a)}\right)\left(L_{L}\right)^{a} \\
\left(e_{R}\right)^{a} & \longrightarrow \exp \left(i \beta^{(a)}\right)\left(e_{R}\right)^{a},
\end{aligned}
$$

where $\exp \left(i \alpha^{(a)}\right) \in \mathrm{U}(1)_{Q^{a}}$ and $\exp \left(i \beta^{(a)}\right) \in \mathrm{U}(1)_{e^{a}}$. In the leptonic sector the $\mathrm{U}(1) \mathrm{s}$ correspond to the conservation of electrons + electron neutrinos (electron number), myons + myon neutrinos (myon number), and tau + tau neutrinos (tau number). In the quark sector the $\mathrm{U}(1) \mathrm{s}$ correspond to the conservation of up quarks + down quarks, charm quarks + strange quarks, and top quarks + bottom quarks.
If the Yukawa couplings were non-diagonal, the mixing would lead to a further breaking of the three quark $\mathrm{U}(1)$ s into the $\mathrm{U}(1)_{\mathrm{B}}$ subgroup, where $\alpha^{1}=\alpha^{2}=\alpha^{3}$, corresponding to the conservation of Baryon number.

Problem 6 (16 points)

Consider the following Lagrangian of a complex scalar field ϕ in 4 spacetime dimensions

$$
\mathcal{L}=\partial_{\mu} \phi^{*} \partial^{\mu} \phi+m^{2} \phi^{*} \phi-\lambda\left(\phi^{*} \phi\right)^{2}+\mu^{2}\left(\phi^{*}+\phi\right)^{2} .
$$

Here $m^{2}, \lambda, \mu^{2}>0$ and $\mu \ll m$ are real parameters.
a) (4pts) Determine the ground state of the theory.

Answer: The potential reads

$$
\begin{equation*}
V=-m^{2} \phi^{*} \phi+\lambda\left(\phi^{*} \phi\right)^{2}-\mu^{2}\left(\phi^{*}+\phi\right)^{2} . \tag{13}
\end{equation*}
$$

Let us introduce the real fields ϕ_{1} and ϕ_{2}, such that

$$
\begin{equation*}
\phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right) . \tag{14}
\end{equation*}
$$

The potential becomes

$$
\begin{equation*}
V=-\frac{m^{2}+4 \mu^{2}}{2} \phi_{1}^{2}-\frac{m^{2}}{2} \phi_{2}^{2}+\frac{\lambda}{4}\left(\phi_{1}^{2}+\phi_{2}^{2}\right)^{2} . \tag{15}
\end{equation*}
$$

First we take the derivatives of the above w.r.t. ϕ_{1} and ϕ_{2} and we require that they vanish

$$
\begin{equation*}
\left.\partial_{\phi_{1}} V\right|_{\phi_{1}=\phi_{1}^{0}, \phi_{2}=\phi_{2}^{0}}=\left.\partial_{\phi_{2}} V\right|_{\phi_{1}=\phi_{1}^{0}, \phi_{2}=\phi_{2}^{0}}=0 . \tag{16}
\end{equation*}
$$

The above equations admit the following solutions

$$
\begin{gather*}
s_{1}=\left\{\phi_{1}^{0}=\phi_{2}^{0}=0\right\} \tag{17}\\
s_{2}=\left\{\phi_{1}^{0}=0, \phi_{2}^{0}= \pm \frac{m}{\sqrt{\lambda}}\right\}, \tag{18}\\
s_{3}=\left\{\phi_{1}^{0}= \pm \sqrt{\frac{m^{2}+4 \mu^{2}}{\lambda}}, \phi_{2}^{0}=0\right\}, \tag{19}
\end{gather*}
$$

To determine which solution corresponds to a (local) minimum of the potential, we compute the "mass matrix" of the theory, i.e. the matrix of the second derivatives of the potential on top of the saddles s_{i}.
First consider s_{1}, for which

$$
M\left(s_{1}\right)=\left.\left(\begin{array}{cc}
\partial_{\phi_{1}, \phi_{1}} V & \partial_{\phi_{1}, \phi_{2}} V \tag{20}\\
\partial_{\phi_{2}, \phi_{1}} V & \partial_{\phi_{2}, \phi_{2}} V
\end{array}\right)\right|_{s_{1}}=-\left(\begin{array}{cc}
m^{2} & 0 \\
0 & m^{2}+4 \mu^{2}
\end{array}\right) .
$$

The eigenvalues of the above are negative, meaning that s_{1} is not a minimum of the potential.
Turning to s_{2}, we obtain

$$
M\left(s_{2}\right)=\left.\left(\begin{array}{cc}
\partial_{\phi_{1}, \phi_{1}} V & \partial_{\phi_{1}, \phi_{2}} V \tag{21}\\
\partial_{\phi_{2}, \phi_{1}} V & \partial_{\phi_{2}, \phi_{2}} V
\end{array}\right)\right|_{s_{2}}=2\left(\begin{array}{cc}
-2 \mu^{2} & 0 \\
0 & m^{2}
\end{array}\right) .
$$

Page 9 of 11

Since $\mu^{2}>0, s_{2}$ does not minimize the potential.
Finally for s_{3}, we obtain

$$
M\left(s_{3}\right)=\left.\left(\begin{array}{cc}
\partial_{\phi_{1}, \phi_{1}} V & \partial_{\phi_{1}, \phi_{2}} V \tag{22}\\
\partial_{\phi_{2}, \phi_{1}} V & \partial_{\phi_{2}, \phi_{2}} V
\end{array}\right)\right|_{s_{3}}=2\left(\begin{array}{cc}
m^{2}+4 \mu^{2} & 0 \\
0 & 2 \mu^{2}
\end{array}\right)>0
$$

implying that s_{3} corresponds to the vacuum of the theory.
b) (7 pts) Find the masses of the particles when the Lagrangian is expanded around the vacuum. (4pts computation +3 pts for result)
Answer: The masses squared of the particles are the eigenvalues of the matrix $M\left(s_{3}\right)$, i.e.

$$
\begin{equation*}
m_{1}^{2}=4 \mu^{2}, \quad m_{2}^{2}=2\left(m^{2}+4 \mu^{2}\right) \tag{23}
\end{equation*}
$$

c) (5pts) What happens in the limit $\mu \rightarrow 0$? Why? Explain. (3pts for $\mathrm{U}(1)+2 \mathrm{pts}$ for explanation (Goldstone))
Answer: If we take $\mu \rightarrow 0$, the theory acquires a global (continuous) $\mathrm{U}(1)$ symmetry. The ground state s_{3} (or equivalently s_{2}) breaks this symmetry spontaneously, so there is one massless Goldstone boson in the spectrum. This is explicitly verified by setting $\mu=0$ in the expressions for masses of the particles from point b), which now boil down to

$$
\begin{equation*}
m_{1}=0, \quad m_{2}=\sqrt{2} m \tag{24}
\end{equation*}
$$

as they should.

Problem 7 (10 points)

Let us assume that in the Standard Model there are two Higgs doublets H^{1} and H^{2} with the same hypercharge as the conventional Higgs. Let the fields take the following vacuum expectation values

$$
H_{0}^{1}=\binom{0}{v_{1}}, \quad H_{0}^{2}=\binom{v_{2}}{0}
$$

a) (4pts)Write down the unbroken generators, if there are any.

Answer: Let us first study the action of the generators on H_{0}^{1} :

$$
\begin{align*}
& T_{1} H_{0}^{1}=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{0}{v_{1}}=\frac{1}{2}\binom{v_{1}}{0}, \\
& T_{2} H_{0}^{1}=\frac{1}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{0}{v_{1}}=-\frac{i}{2}\binom{v_{1}}{0}, \\
& T_{3} H_{0}^{1}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{0}{v_{1}}=-\frac{1}{2}\binom{0}{v_{1}}, \tag{25}\\
& Y H_{0}^{1}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\binom{0}{v_{1}}=\frac{1}{2}\binom{0}{v_{1}} .
\end{align*}
$$

We immediately notice that

$$
\begin{equation*}
G H_{0}^{1} \equiv\left(T_{3}+Y\right) H_{0}^{1}=0 \tag{26}
\end{equation*}
$$

meaning that the vev of the first doublet breaks $\mathrm{SU}(2) \times \mathrm{U}(1)$ down to $\mathrm{U}(1)$. When we act with G on the second doublet, we get

$$
\begin{equation*}
G H_{0}^{2}=\binom{v_{2}}{0} \neq 0 \tag{27}
\end{equation*}
$$

so the residual $U(1)$ symmetry is also broken.
Note that no other generator G^{\prime} can be found, which would leave both vev's invariant.
b) (3pts)What is the unbroken group?

Answer: There is no unbroken group.
c) (3pts)How many gauge bosons acquire mass and how many remain massless?
Answer: Since the symmetry is completely broken, there will be 4 massive gauge bosons.

