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Problem 1 (9 points)

Consider the following Lagrangian of a real scalar field Φ in 4 spacetime
dimensions

L =
1

2
∂µΦ∂µΦ +

m2

2
Φ2 − λ

4
Φ4 ,

with m2, λ > 0.

a) (2pts) What is the symmetry of the above Lagrangian ?

Answer : Since the scalar is real, the Lagrangian is invariant under

Φ→ −Φ .

b) (4pts) Minimize the potential and determine the ground state of the
system. Is the symmetry broken spontaneously ? (1pt for each mini-
mum + 2pts for SSB)

Answer : The potential is minimized by

〈Φ〉 = ±
√
m2

λ
≡ ±v .

Since the VEV of Φ is non-zero, the symmetry is broken spontaneously.

c) (3pts) How many Goldstone bosons are in the spectrum ? Justify your
answer. (1pt for Goldstones number + 2pts for justification)

Answer : Since no continuous symmetry is broken, there are no Gold-
stone bosons.

Problem 2 (23 points)

Consider a theory invariant under a local SU(2) symmetry with a scalar field

in the adjoint representation of the group, i.e. φ =
3∑
i=1

φiT i, where the φi’s

are real and T i’s the Hermitian generators of SU(2).

a) (5pts)Write down the most general renormalizable SU(2)- and Lorentz-
invariant Lagrangian in four spacetime dimensions.(1pt for each term+1pt
for covariant derivative)
Answer : The most general gauge invariant & renormalizable Lagran-
gian reads

L = −1

2
Tr(FµνF

µν) + Tr[(Dµφ)†Dµφ] +m2Tr(φ2)− λ(Tr(φ)2)2 , (1)
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where the covariant derivative for the field in the adjoint representa-
tion reads

Dµφ = ∂µφ− ig[Aµ, φ] , (2)

and as usual the square brackets [·, ·] stand for the commutator.

b) (4pts)Arrange the potential such that the vacuum expectation value
(vev) of the scalar field is non-zero. Find the vev by explicitly mini-
mizing the potential. (2pts for coefficients+2pts for vev)
Answer : The potential that allows for spontaneous symmetry brea-
king reads

V (φ) = −m2Tr(φ2) + λ(Tr(φ2))2 , (3)

with m2, λ > 0. Taking the derivative w.r.t. φ, we obtain

V ′(φ) = −2m2φ+ 4λTr(φ2)φ . (4)

We now require that for φ = φ0 6= 0 the above vanishes. This is the
case for

Tr(φ2
0) =

m2

2λ
. (5)

Since the field lives in the adjoint of the group, we have

φ =
3∑
i=1

φiT i =
1

2

(
φ3 φ1 − iφ2

φ1 + iφ2 −φ3

)
, (6)

and we immediately find

(φ1
0)

2 + (φ2
0)

2 + (φ3
0)

2 =
m2

λ
. (7)

Without loss of generality (due to the SU(2) symmetry), we may
choose φ1

0 = φ2
0 = 0 and φ3

0 = m√
λ
, meaning that

φ0 =
v

2

(
1 0
0 −1

)
, (8)

with v = m√
λ
. To verify that this saddle point corresponds to a (local)

minimum, we take the second derivative of the potential

V ′′(φ)
∣∣∣
φ=φ0

= 2m2

0 0 0
0 0 0
0 0 1

 . (9)
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c) (5pts)What is the unbroken symmetry group ? How many gauge bo-
sons acquire a mass and how many remain massless ? Justify your
answer. (3pts for U(1)+2pts for spectrum)
Answer : To find the unbroken symmetry group, we have to study
the action of the generators on the vev φ0. Since the field lives in the
adjoint, we have to consider its commutators with the generators :

[φ0, T
1] = v

(
0 1
−1 0

)
,

[φ0, T
2] = −i v

(
0 1
1 0

)
,

[φ0, T
3] =

(
0 0
0 0

)
.

(10)

The unbroken symmetry group is therefore U(1). Out of the 3 gauge
bosons, two will get a mass and one will be massless.

d) (6pts) Determine the masses of the gauge bosons.(3pts for formula+3pts
for result)
Answer : The masses of the gauge bosons are generated via the co-
variant derivative of the scalar field and more specifically from the
term

Tr([Aµ, φ0][Aµ, φ0]) =
g2v2

2
((A1

µ)2 + (A2
µ)2) , (11)

meaning that the masses of the physical gauge bosons W±
µ = 1√

2
(A1

µ∓
A2
µ) are equal to gv, while the mass of A3

µ is zero. The above is of course
in agreement with our expectation that only two of the gauge bosons
will acquire a mass, while the third will remain massless.

e) (3pts) Can this model alone describe the gauge electroweak interac-
tions ? Justify your answer.(1pt for answer+2 for justification)
Answer : This model alone cannot describe the gauge electroweak sec-
tor of the Standard Model, because it cannot account for the Z boson.

Problem 3 (13 points)

a) (4pts) Add a right-handed neutrino to the Lagrangian of the SM,
which only has a Majorana mass term. Write down the corresponding
Lagrangian. Does this particle conserve lepton number ? Verify your
statement by an explicit calculation.(1pt for kinetic + 1pt for mass +
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1pt for lepton number + 1pt for justification)
Answer :

Ladd = iν̄Rγ
µ∂µνR −

1

2
mM

(
νTRCνR + h.c.

)
,

where νR is the right-handed neutrino and C = iγ2γ0 is the charge
conjugation matrix.

Since νR is a lepton, it transforms under U(1)lepton as

νR → eiανR.

But then, the above mass term is not invariant :

νTRCνR → e2iανTRCνR,

so lepton number is not conserved.

b) (3pts) Is a Majorana mass term invariant under parity transforma-
tions ? Verify your statement by an explicit calculation. (1pt for ans-
wer+2pts for computation)
Hint : Do not forget the phase.
Answer : A Majorana fermion transforms under parity as

νR(x)
P→ iγ0νR(x′),

where x′ = (t,−~x). So the mass term transforms as

νTR(x)CνR(x)→ (i)2νTR(x′)γ0 Cγ0︸︷︷︸
−γ0C

νR(x′) = νTR(x′)CνR(x′).

Hence the action (after performing x′ → x) is invariant.

c) (6pts) Draw a Feynman diagram for the process n + n → p + p +
e−+ e−. Can this process happen within the SM (including the above
modification) ? (4pts for diagram + 2pts for answering)
Answer :
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d

d

e−

e−

u

u

d

d
u

u

d

d
u

u

W−

νR

W−

n

p

n
p

Yes, the process can happen, because νR is a Majorana particle and
hence lepton number is not conserved.

Problem 4 (9 points)

a) (4pts) Draw two tree-level Feynman diagrams that describe the decay
of the Higgs particle to the W and Z gauge bosons (one each).(2pts
for each diagram)
Answer :

h

W+ν

W−µ

p
q

p− q
h

Zν

Zµ

p
q

p− q

b) (3pts)Are these processes kinematically allowed ?
Answer : No, because mh ' 126 GeV, mW ' 80 GeV and mZ '
91 GeV, so the Higgs cannot decay into any of the two on-shell.

c) (2pts) Write down the interaction vertex governing the Higgs-W+W−

coupling.

Answer : If we write the Higgs doublet as H = 1√
2

(
0

v + h

)
(in unitary

gauge), the kinetic term (DµH)†DµH in the SM Lagrangian contains
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the term
2m2

W

v
hW+

µ W
−µ.

From this we can read off the vertex

ν

µ

= i
2m2

W

v
gµν .

Problem 5 (20 points)

Let us focus on the fermionic sector of the SM (without right-handed neu-
trinos).

a) (10pts)Set all the Yukawa couplings to zero. What is the global sym-
metry group in this case (apart from the gauged SU(2)×U(1)) ? (5pts
for result (2.5 if only subgroups or less symmetries+5pts for justifica-
tion))

Answer : Setting all Yukawa coupling to zero, the fermionic sector
only consists of kinetic terms, i.e.,

LF =(QL)a iγµDµ(QL)a + (uR)a iγµDµ(uR)a + (dR)a iγµDµ(dR)a

+ (LL)a iγµDµ(LL)a + (eR)a iγµDµ(eR)a ,

where a = 1, 2, 3 is a generation and Dµ is the standard covariant
derivative for the corresponding fermionic field. In this form we can
see that the Lagrangian is invariant under

(QL)a −→ (UQL
)ab (QL)b

(uR)a −→ (UuR)ab (uR)b

(dR)a −→ (UdR)ab (dR)b

(LL)a −→ (ULL
)ab (LL)b

(eR)a −→ (UeR)ab (eR)b ,

where UQL
, UuR , UdR , ULL

, UeR ∈ U(3) and independent of each other.
Thus, the global Flavor symmetry is

GF = U(3)QL
× U(3)uR × U(3)dR × U(3)LL

× U(3)eR
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b) (10pts) Assume that the Yukawa couplings are non-zero diagonal ma-
trices. What is the global symmetry group in this case ? (5pts for result
(2.5 if only subgroups or less symmetries+5pts for justification))

Answer : The Yukawa terms are

LY =−H(y(d))ab(Q̄L)a(dR)b − H̃(y(u))ab(Q̄L)a(uR)b

− H̃(y(e))ab(L̄L)a(eR)b + h.c. .

We want to stress that the Yukawa matrices are taken to be non-
zero diagonal matrices. In this case, the flavor symmetry is explicitly
broken down to the vectorlike subgroups

U(1)Q1 × U(1)Q2 × U(1)Q3 × U(1)e1 × U(1)e2 × U(1)e3 (12)

i.e,

(QL)a −→ exp(iα(a))(QL)a

(uR)a −→ exp(iα(a))(uR)a

(dR)a −→ exp(iα(a))(dR)a

(LL)a −→ exp(iβ(a))(LL)a

(eR)a −→ exp(iβ(a))(eR)a ,

where exp(iα(a)) ∈ U(1)Qa and exp(iβ(a)) ∈ U(1)ea . In the leptonic
sector the U(1)s correspond to the conservation of electrons + elec-
tron neutrinos (electron number), myons + myon neutrinos (myon
number), and tau + tau neutrinos (tau number). In the quark sec-
tor the U(1)s correspond to the conservation of up quarks + down
quarks, charm quarks + strange quarks, and top quarks + bottom
quarks.

If the Yukawa couplings were non-diagonal, the mixing would lead to
a further breaking of the three quark U(1)s into the U(1)B subgroup,
where α1 = α2 = α3, corresponding to the conservation of Baryon
number.

Problem 6 (16 points)

Consider the following Lagrangian of a complex scalar field φ in 4 spacetime
dimensions

L = ∂µφ
∗∂µφ+m2φ∗φ− λ(φ∗φ)2 + µ2(φ∗ + φ)2 .

Here m2, λ, µ2 > 0 and µ� m are real parameters.

Page 8 of 11



a) (4pts) Determine the ground state of the theory.
Answer : The potential reads

V = −m2φ∗φ+ λ(φ∗φ)2 − µ2(φ∗ + φ)2 . (13)

Let us introduce the real fields φ1 and φ2, such that

φ =
1√
2

(φ1 + iφ2) . (14)

The potential becomes

V = −m
2 + 4µ2

2
φ2
1 −

m2

2
φ2
2 +

λ

4
(φ2

1 + φ2
2)

2 . (15)

First we take the derivatives of the above w.r.t. φ1 and φ2 and we
require that they vanish

∂φ1V
∣∣∣
φ1=φ01,φ2=φ

0
2

= ∂φ2V
∣∣∣
φ1=φ01,φ2=φ

0
2

= 0 . (16)

The above equations admit the following solutions

s1 =
{
φ0
1 = φ0

2 = 0
}
, (17)

s2 =

{
φ0
1 = 0, φ0

2 = ± m√
λ

}
, (18)

s3 =

{
φ0
1 = ±

√
m2 + 4µ2

λ
, φ0

2 = 0

}
, (19)

To determine which solution corresponds to a (local) minimum of the
potential, we compute the “mass matrix” of the theory, i.e. the matrix
of the second derivatives of the potential on top of the saddles si.
First consider s1, for which

M(s1) =

(
∂φ1,φ1V ∂φ1,φ2V
∂φ2,φ1V ∂φ2,φ2V

) ∣∣∣
s1

= −
(
m2 0
0 m2 + 4µ2

)
. (20)

The eigenvalues of the above are negative, meaning that s1 is not a
minimum of the potential.
Turning to s2, we obtain

M(s2) =

(
∂φ1,φ1V ∂φ1,φ2V
∂φ2,φ1V ∂φ2,φ2V

) ∣∣∣
s2

= 2

(
−2µ2 0

0 m2

)
. (21)
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Since µ2 > 0, s2 does not minimize the potential.
Finally for s3, we obtain

M(s3) =

(
∂φ1,φ1V ∂φ1,φ2V
∂φ2,φ1V ∂φ2,φ2V

) ∣∣∣
s3

= 2

(
m2 + 4µ2 0

0 2µ2

)
> 0 , (22)

implying that s3 corresponds to the vacuum of the theory.

b) (7pts) Find the masses of the particles when the Lagrangian is expan-
ded around the vacuum. (4pts computation + 3pts for result)
Answer : The masses squared of the particles are the eigenvalues of
the matrix M(s3), i.e.

m2
1 = 4µ2 , m2

2 = 2(m2 + 4µ2) . (23)

c) (5pts) What happens in the limit µ → 0 ? Why ? Explain. (3pts for
U(1)+2pts for explanation (Goldstone))
Answer : If we take µ→ 0, the theory acquires a global (continuous)
U(1) symmetry. The ground state s3 (or equivalently s2) breaks this
symmetry spontaneously, so there is one massless Goldstone boson
in the spectrum. This is explicitly verified by setting µ = 0 in the
expressions for masses of the particles from point b), which now boil
down to

m1 = 0 , m2 =
√

2m , (24)

as they should.

Problem 7 (10 points)

Let us assume that in the Standard Model there are two Higgs doublets H1

and H2 with the same hypercharge as the conventional Higgs. Let the fields
take the following vacuum expectation values

H1
0 =

(
0
v1

)
, H2

0 =

(
v2
0

)
.

a) (4pts)Write down the unbroken generators, if there are any.
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Answer : Let us first study the action of the generators on H1
0 :

T1H
1
0 =

1

2

(
0 1
1 0

)(
0
v1

)
=

1

2

(
v1
0

)
,

T2H
1
0 =

1

2

(
0 −i
i 0

)(
0
v1

)
= − i

2

(
v1
0

)
,

T3H
1
0 =

1

2

(
1 0
0 −1

)(
0
v1

)
= −1

2

(
0
v1

)
,

Y H1
0 =

1

2

(
1 0
0 1

)(
0
v1

)
=

1

2

(
0
v1

)
.

(25)

We immediately notice that

GH1
0 ≡ (T3 + Y )H1

0 = 0 , (26)

meaning that the vev of the first doublet breaks SU(2)×U(1) down to
U(1). When we act with G on the second doublet, we get

GH2
0 =

(
v2
0

)
6= 0 , (27)

so the residual U(1) symmetry is also broken.

Note that no other generator G′ can be found, which would leave both
vev’s invariant.

b) (3pts)What is the unbroken group ?
Answer : There is no unbroken group.

c) (3pts)How many gauge bosons acquire mass and how many remain
massless ?
Answer : Since the symmetry is completely broken, there will be 4
massive gauge bosons.
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