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Page 1 of 9



Problem 1 (12 points)

Let the Standard Model Higgs doublet take the following vacuum expectation
value

H0 =

(
v1
v2

)
.

a) Write down the unbroken generators, if there are any. (4P)

Answer : Parametrizing the Higgs field as

H0 =

(
h1 + i h2
h3 + i h4

)
0

, (1)

with (h1, . . . h4)0 real, we see that the vacuum manifold is described
by

H†0H0 =
∑

h2i,0 = v21 + v22 = const. ≡ v2 . (2)

This is nothing else than S3, so the situation is similar to the normal
case. However, the unbroken generator looks different in this parame-
trization. The condition for a generator to be unbroken is 1P

TH0 = 0 . (3)

This is solved by 2P

T ∝
(
−v2
v1

1

1 −v1
v2

)
. (4)

Notice that the above is Hermitian, i.e. T † = T , as it has to be. 1P

b) What is the unbroken group ? (4P)

Answer : The unbroken group is U(1). 4P

c) How many gauge bosons acquire mass and how many remain mass-
less ? (4P)

Answer : Since only one generator is unbroken and three broken, there
will be one massless and three massive gauge bosons. 4 P
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Problem 2 (8 points)

Consider the limit in which all the gauge and Yukawa couplings in the Stan-
dard Model are zero. What would be the symmetry of the Higgs sector in
this case ? (8P)
Answer : In this case the Lagrangian of H would be

L =
1

2
(∂µH)†∂µH − λ

4

(
H†H − v2

)2
. (5)

Writing

H =

(
h1 + i h2
h3 + i h4

)
, (6)

with h1, . . . h4 reals, we find

L =
1

2

4∑
i=1

∂µhi∂
µhi −

λ

4

(
4∑
i=1

h2i − v2
)2

. (7)

This Lagrangian is symmetric under a global SO(4) = SU(2) × SU(2) sym-
metry (Custodial), under which the Higgs transforms as hi → h′i = Rijhj
with rotation matrices R. 2P for only U(1), 4P for only SU(2), 8P for full
symmetry.

Problem 3 (20 points)

a) Demonstrate that the hypercharge is free from gauge anomalies. Consi-
der [U(1)]3, as well as the mixed anomalies including hypercharge with
SU(2) and SU(3). (12P) [3 P each, 1 P for formula, 2 P for calculation.
In the case with one SU(N), 3 P for the argument]

Answer :

— [U(1)]3 : In the diagrammatic language the pure hypercharge ano-
maly comes from the triangle diagram with a U(1) gauge boson at
each leg. This can be split as a sum of two triangle diagrams, one
with the left handed fermions in the loop and one with the right
handed fermions. Note that the right handed diagram comes with
an overall minus due to the different sign in the projector PR.
Since the coupling is universal the diagrams do not differ up to the
vertex factors, i.e. the whole triangle diagram is proportional to∑

L

Y 3
L −

∑
R

Y 3
R . (8)
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So for the theory to be free from the anomaly, this factor needs to
vanish. The hypercharges of the fermions in the Standard Model
follow from Q = I3 + Y/2, i.e.

YL YR
uL

1
3

uR
4
3

dL
1
3

dR −2
3

νL −1 eR −2
e −1

Taking into account that the quarks appear with three different
colors, we can easily check that the hypercharge anomaly vanishes :∑

L

Y 3
L = 3

(
1

3

)3

+ 3

(
1

3

)3

+ (−1)3 + (−1)3 = −16

9
(9)

∑
R

Y 3
R = 3

(
4

3

)3

+ 3

(
−2

3

)3

+ (−2)3 = −16

9
(10)

— The anomalies with SU(N)× [U(1)]2 vanish, because the genera-
tors of SU(N) are traceless.

— U(1)[SU(2)]2 : Anomaly proportional to∑
l.h. quarks

YL −
∑

r.h. quarks

YR = 3

(
1

3

)
+ 3

(
1

3

)
− 3

(
4

3
− 2

3

)
= 0 .

— U(1)× [SU(3)]2 : Anomaly proportional to∑
L

YL = 3

(
1

3

)
+ 3

(
1

3

)
− 1− 1 = 0 . (11)

b) Consider a (gauge) U(1) theory with a massless gauge boson and 3
Dirac fermions with masses m1 = 4m2 = 5

3
m3 6= 0. What is the [U(1)]3

gauge anomaly in this case ? (8P)

Answer : Since the theory does not have a chiral symmetry, it cannot
have an associated anomaly per definition. 8P

Problem 4 (28 points)

Assume that the mass matrices for the up- and down- type quarks have the
following forms (in the basis of weak interaction eigenstates)

M (u) =

mu 0 0
0 mc 0
0 0 mt

 , and M (d) = m

1 + a2 ab 0
ab 1 + b2 0
0 0 1

 ,
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respectively. Here mi, [i = u, c, t] the mass of the respective quark flavor, m
a parameter with dimensions of mass, and a, b real.

a) Find the CKM matrix. How many independent parameters does it
have ? Parametrize them in terms of a and b. (18P) .

Answer : The CKM matrix appears in theW boson interactionW µ+ūLγµdL
after going from the weak interaction basis to the mass eigenstate ba-
sis. This happens since this interaction is flavor violating and the dif-
ferent flavors are rotated independently from each other. Hence, the
CKM matrix is VCKM = (Lu)†Ld, where Lu, Ld are the transformation
matrices of uL, dL respectively.

Since M (u) is already diagonal in the weak eigenbasis, the CKM matrix
is just Ld 2P. In order to find Ld we diagonalize M (d). Since M (d) is
hermitian, it can be diagonalized with just one unitary matrix, namely
VCKM 2P. First, we find the eigenvalues of the matrix by considering

det(M (d) − λ I3×3) = (m− λ)
[
(1 + a2 + b2)m− λ

]
(m− λ) = 0 ,

meaning that

λ1 = m , λ2 = m(1 + a2 + b2) , λ3 = m .

Next, we find the normalized eigenvector corresponding to the λi’s

~e1 = (0, 0, 1)T , ~e2 =
1√

a2 + b2
(a, b, 0)T , ~e3 =

1√
a2 + b2

(−b, a, 0)T .

The CKM matrix VCKM is such that M (d) = VCKMM
(d)
diagV

†
CKM , with

M
(d)
diag =

λ1 0 0
0 λ2 0
0 0 λ3

 .

It is well known that such a matrix comprises the normalized eigen-
vectors of M (d), i.e. 7P

VCKM = (~e1 ~e2 ~e3) =

0 a√
a2+b2

−b√
a2+b2

0 b√
a2+b2

a√
a2+b2

1 0 0

 .

Comparing the above with the following rotation matrix0 cos θmix − sin θmix

0 sin θmix cos θmix

1 0 0

 ,

we find that the mixing angle is θmix = arctan(b/a) 7P.
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b) Will there be a physical CP-violating phase ? Explain. (10 P)

Answer : There is no physical CP-violating phase since the CKM
matrix given here is real. 10P

Problem 5 (32 points)

Let us now restrict ourselves to two generations of quarks. Take the mass
matrix of the up-type quarks to be diagonal, and the one for the down-type
quarks to be the following

M (d) = m

(
0 a
a 2b

)
,

with m a parameter with dimensions of mass and a, b real with a� b.

a) Find the 2× 2 analog of the CKM matrix in terms of a and b. (8 P)

Answer : The eigenvalues of the mass matrix are

λ1 = m(b+
√
a2 + b2) ≈ 2mb , λ2 = m(b−

√
a2 + b2) ≈ −a

2m

2b
. (12)

The CKM matrix VCKM is such that M (d) = VCKMM
(d)
diagV

†
CKM , with

M
(d)
diag =

(
λ1 0
0 λ2

)
. (13)

It is easy to see that

VCKM =
1√

a2 + 4b2

(
2b a
−a 2b

)
=

(
cos θmix sin θmix

− sin θmix cos θmix

)
, (14)

with θmix = arctan(a/2b) 4P+4P.

b) Take ms/md ≈ 20 and compare the value of the mixing angle with its
experimentally measured value θmix ≈ 13o. (4P)

Answer : We have 3P

ms = λ1 ≈ 2mb , md = λ2 ≈ −
a2m

2b
,

meaning that θmix ≈ arctan
√

md

ms
≈ 12.5o, very close to its experimentally-

measured value 1P .

Page 6 of 9



c) Compute the following tree-level ratios of the W- and Z- boson decay
rates to quarks as a function of θmix

Γ(W → ud)

Γ(W → us)
,

Γ(Z → uLuL)

Γ(Z → dLdL)
,

Γ(Z → uRuR)

Γ(Z → dLdL)
.

Assumptions : Take the W- and Z- bosons at rest. Assume that the
quark masses are negligible compared to their energies. (20 P)

Answer :

—[W decay] (8P total) : 3P for the computation, 5P for the result
The matrix element for the W → ud decay reads

Mud =
g√
2
Vudε

∗
µū(p)γµLv(q)

M†
ud =

g√
2
V ∗udεµv̄(q)Rγµu(p)

with spinors u and v. Putting these together we obtain

|Mud|2 =
∑
spins

M†M =
g2

2
|Vud|2εµε∗νqαpβTr(γµLγαγνLγβ)

= g2|Vud|2[(q · ε)(p · ε∗)− (ε∗ · ε)(p · q) + (q · ε∗)(p · ε)
− iεαµβνqαεµpβε∗ν ]

In principle we need to calculate all polarizations and average for an
unpolarized vector boson, but the unpolarized decay rate is equal to
any other polarization rate since we can choose our coordinate system
freely. In the following we choose it such that

εµ(0) = (0, 0, 0, 1)T , (15)

(16)

and

pµ = mW/2 (1, sin θ, 0, cos θ)T (17)

qµ = mW/2 (1,− sin θ, 0,− cos θ)T (18)

(19)
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We observe that the Levi-Civita-term vanishes due to the symmetry
of εµε∗ν under µ↔ ν. Further, ε∗ · ε = −1, so that we get

|Mud(0)|2 =
g2m2

W

2
|Vud|2 sin2 θ , (20)

where θ is the angle between ~p and the z-axis. The partial decay and
the total decay rate are then

dΓ

dΩ
(W → ud) =

g2mW

64π2
|Vud|2

1

2
sin2 θ

Γ(W → ud) =
g2mW

48π
|Vud|2 .

For the W → us decay, a completely analogous computation reveals
that

Γ(W → us) =
g2mW

48π
|Vus|2 .

Using Vud = V11 = cos θmix and Vus = V12 = sin θmix, we find the ratio

Γ(W → ud)

Γ(W → us)
= cot2 θmix .

—[Z decay] (6P + 6P) : 2P + 2P for the computations, 4P+4P for
the results
The interaction term responsible for the Z → u u decay is

L ⊃ gZµ

[(
cos θW I

3 − sin θW tan θW
YQ
2

)
ūLγµuL

−
(

sin θW tan θW
Yu
2

)
ūRγµuR

]
≡ gZµ[cL ūLγµuL + cR ūRγµuR]

Notice that the Z- boson couplings to left and right handed quarks
are not equal.

With the above interaction terms we can perform practically the same
calculation as in the W-boson decay. There are only two differences :
The first difference is that the interaction term has no factor of 1/

√
2,

The second difference, which is the most important, is that the CKM
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matrix does not appear at tree level. The total decay rates are found
to be

Γ(Z → uLuL) =
g2mZ

24π
c2L , Γ(Z → uRuR) =

g2mZ

24π
c2R .

Similarly, for the down quarks,

Γ(Z → dLdL) =
g2mZ

24π
c̃2L , Γ(Z → dRdR) =

g2mZ

24π
c̃2R .

We notice that there is no dependence on the mixing angle θmix, so-
mething of course expected. Putting the numbers for ci’s and c̃i’s
[i = L,R], we find that the ratios are

Γ(Z → uLuL)

Γ(Z → dLdL)
=

(
cL
c̃L

)2

≈ 0.66 ,
Γ(Z → uRuR)

Γ(Z → dLdL)
=

(
cR
c̃L

)2

≈ 0.15 .
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