Ludwig-Maximilians-Universität München

QCD and Standard Model

Prof. Dr. Georgi Dvali
Assistants : Dr. Georgios Karananas, Emmanouil Koutsangelas, Max Warkentin

10 August 2020

Guidelines :

- The exam consists of 5 problems.
- The duration of the exam is 2.5 hours.
- Please write your name or matriculation number on every sheet that you hand in.
- Your answers should be comprehensible and readable.

GOOD LUCK!

Exercise 1	12 P
Exercise 2	8 P
Exercise 3	20 P
Exercise 4	28 P
Exercise 5	32 P

Total	100 P

Page 1 of 3

Problem 1 (12 points)

Let the Standard Model Higgs doublet take the following vacuum expectation value

$$
H_{0}=\binom{v_{1}}{v_{2}}
$$

a) Write down the unbroken generators, if there are any.
b) What is the unbroken group?
c) How many gauge bosons acquire mass and how many remain massless?

Problem 2 (8 points)

Consider the limit in which all the gauge and Yukawa couplings in the Standard Model are zero. What would be the symmetry of the Higgs sector in this case?

Problem 3 (20 points)

a) Demonstrate that the hypercharge is free from gauge anomalies. Consider $[\mathrm{U}(1)]^{3}$, as well as the mixed anomalies including hypercharge with $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$.
b) Consider a (gauge) $\mathrm{U}(1)$ theory with a massless gauge boson and 3 Dirac fermions with masses $m_{1}=4 m_{2}=\frac{5}{3} m_{3} \neq 0$. What is the $[\mathrm{U}(1)]^{3}$ gauge anomaly in this case?

Problem 4 (28 points)

Assume that the mass matrices for the up- and down- type quarks have the following forms (in the basis of weak interaction eigenstates)

$$
M^{(u)}=\left(\begin{array}{ccc}
m_{u} & 0 & 0 \\
0 & m_{c} & 0 \\
0 & 0 & m_{t}
\end{array}\right), \quad \text { and } \quad M^{(d)}=m\left(\begin{array}{ccc}
1+a^{2} & a b & 0 \\
a b & 1+b^{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

respectively. Here $m_{i},[i=u, c, t]$ the mass of the respective quark flavor, m a parameter with dimensions of mass, and a, b real.
a) Find the CKM matrix. How many independent parameters does it have? Parametrize them in terms of a and b.
b) Will there be a physical CP-violating phase? Explain.

Problem 5 (32 points)

Let us now restrict ourselves to two generations of quarks. Take the mass matrix of the up-type quarks to be diagonal, and the one for the down-type quarks to be the following

$$
M^{(d)}=m\left(\begin{array}{cc}
0 & a \\
a & 2 b
\end{array}\right),
$$

with m a parameter with dimensions of mass and a, b real with $a \ll b$.
a) Find the 2×2 analog of the CKM matrix in terms of a and b.
b) Take $m_{s} / m_{d} \approx 20$ and compare the value of the mixing angle $\theta_{\text {mix }}$ with its experimentally measured value $\theta_{\text {mix }} \approx 13^{\circ}$.
c) Compute the following tree-level ratios of the W - and Z- boson decay rates to quarks as a function of $\theta_{\text {mix }}$

$$
\frac{\Gamma(W \rightarrow u d)}{\Gamma(W \rightarrow u s)}, \quad \frac{\Gamma\left(Z \rightarrow u_{L} u_{L}\right)}{\Gamma\left(Z \rightarrow d_{L} d_{L}\right)}, \quad \frac{\Gamma\left(Z \rightarrow u_{R} u_{R}\right)}{\Gamma\left(Z \rightarrow d_{L} d_{L}\right)} .
$$

Assumptions : Take the W - and Z- bosons at rest. Assume that the quark masses are negligible compared to their energies.

