Problem I
The starting point is:

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi_{i} \partial \mu \varphi_{i}-V(\phi) \quad, \quad \text { (1) }
$$

with φ_{a} 's are 3 real scalars ($i=1,2,3$), and there potential is

$$
\left.V(\phi)=-\frac{\mu^{2}}{2} \phi_{i} \varphi_{i}+\frac{\lambda}{4} \varphi_{i} \varphi_{i}\right)^{n}, \text { (2) }
$$

always summation over repeated indexes is assumed.
(a) Introduce

$$
\Phi=\left(\begin{array}{l}
\varphi_{1} \\
p_{2} \\
\varphi_{3}
\end{array}\right) \quad,(3)
$$

in terms of which (1), become

$$
\mathcal{L}=\frac{1}{2} \theta_{\mu} \Phi^{\top} \partial^{\mu} \Phi+\frac{\mu^{2}}{2} \Phi^{\top} \Phi-\frac{\lambda}{4}\left(\mathscr{\varphi}^{\top} \Phi\right)^{2} \cdot(\varphi)
$$

Now, for Φ, rotations act as

$$
\begin{equation*}
\Phi \rightarrow \Phi^{\prime}=0 \Phi \tag{5}
\end{equation*}
$$

with 0 an orthogonal 3x3 matinx:

$$
\begin{equation*}
o_{0} \top_{0}=11 \tag{6}
\end{equation*}
$$

[From (5), we notice that

$$
\begin{equation*}
\Phi^{\top} \rightarrow \Phi^{\top}=(O \Phi)^{\top}=\Phi^{\top} 0^{\top} \tag{7}
\end{equation*}
$$

Plug (5) \& (7) וnto (4), and see what happers:

$$
\begin{align*}
& \mathcal{L} \rightarrow \mathcal{L}^{\prime}=\frac{1}{2} \theta_{\mu} \bar{\Phi}^{\prime T} \partial^{\mu} \bar{q}^{\prime}+\frac{N^{2}}{2} \bar{I}^{\prime T} \bar{\Phi}^{\prime} \\
& -\frac{\lambda}{4}\left(\Phi^{\prime \top} \Phi^{\prime}\right)^{2} \\
& =\frac{1}{2} \mu_{\mu} \Phi^{\top} \theta^{\top} 0 \partial_{\mu} \Phi+\frac{\mu^{2}}{q} \Phi^{\top} \phi^{\top} 0 \Phi \\
& -\frac{\lambda}{4}\left(\Phi^{\top} 0^{T} \sigma \bar{S} \Phi\right)^{2} \tag{0}\\
& =\frac{1}{2} \rho^{\prime} \Phi^{\top} \partial \Gamma \Phi+\frac{\mu^{2}}{2} \Phi^{\top} \overline{\mathscr{L}}-\frac{\lambda}{4}\left(\mathscr{D}^{\top} \Phi\right)^{2} \\
& =\mathscr{L}
\end{align*}
$$

Indeed, we have invariance. under 3D rotations in the interad space of fields P_{i}.
[Equivalently, you nay work with each component separately:

$$
\left.P_{i} \rightarrow P_{L}^{\prime} \supset \leftarrow_{i j k} \ldots\right]
$$

(b) We hora the potential

$$
\begin{equation*}
V(\varphi)=-\frac{\mu^{2}}{2} \varphi_{i} \varphi_{i}+\frac{\lambda}{h}\left(\varphi_{i} \varphi_{i}\right)^{2} \tag{9}
\end{equation*}
$$

and we wart to minimize it.

* first we look for extrema:

$$
\begin{align*}
& \frac{\partial V}{\partial \varphi_{1}}=\frac{\partial V}{\partial \varphi_{2}}=\frac{\partial V}{\partial \varphi_{3}}=0 \tag{10}\\
& {\left[\frac{\partial V}{\partial \varphi_{i}}=0, \forall i\right]}
\end{align*}
$$

Free (10), we Bid two options: either (i) $\varphi_{i}=0$, or (ii) $\varphi_{i} \varphi_{i}=\frac{\mu^{2}}{\lambda} \quad$ (II)

* Once we have the extremer, we study whether they are minima or maxima, ie.

$$
\begin{equation*}
\frac{\partial^{2} V}{\partial \varphi_{i} \partial \varphi_{j}} \sum_{i}^{<\max ^{\min }} 0 \tag{12}
\end{equation*}
$$

for the putertiad (2) $[(a)]$, we Rind
(i) $\varphi_{i}=0 \rightarrow$ maximum (TBa)
(ii) $\varphi_{i} \varphi_{i}=\frac{e^{2}}{d} \rightarrow \operatorname{mininum}(\mid 3 k)$

I unite (Bb) explicitly:

$$
\phi_{1}^{2}+\phi_{2}^{2}+\varphi_{3}^{2}=\frac{\mu^{2}}{\lambda} \quad \text { (lu) }
$$

\uparrow
Id sphere \rightarrow vacuum manifold.
(6) I moy take wlog

$$
\begin{aligned}
& \phi_{1}=0 \\
& \varphi_{2}=0 \\
& \varphi_{3} \neq 0 \rightarrow \phi_{3}=\frac{\mu}{\sqrt{\lambda}}
\end{aligned}
$$

$$
\left.\left[\begin{array}{l}
\varphi_{1} \neq 0 \\
\varphi_{2} \neq 0 \\
\varphi_{3} \neq 0
\end{array}\right\} \begin{array}{l}
I \text { alungs nare } \\
\text { н satisty (14) }
\end{array}\right]
$$

$$
S O(3) \rightarrow S O(2)
$$

We can show ohed explicitly :Tabe

$$
\phi_{1}=0+\theta_{1}, \phi_{2}=0+\theta_{2}, \phi_{3}=\frac{\mu}{\sqrt{\lambda}}+\chi(16)
$$

\& pluss into the Lagrangieun, to find yext the quadvatic picas redd.

$$
\begin{array}{r}
\mathscr{L}(2)=\frac{1}{2}\left(\partial_{\mu} \theta_{a}\right)^{2}+\frac{1}{2}\left(\theta_{\mu} x\right)^{2}-\mu^{2} x^{2}(17) \\
+\cdots=1,2 \quad \begin{array}{l}
\text { apher-ordes in ficls }
\end{array} \\
\quad \begin{array}{l}
\text { uip }
\end{array}
\end{array}
$$

Nitice two terings:
(1) S'O(2) iuvevience becave θ_{a} 's appear in a symeoting-prosering form
(2) x is a massive field with mass

$$
m_{x}=\sqrt{2}
$$

θ_{1}, θ_{2} which are nassles
we heve a situection in which

$$
S O(3) \rightarrow S O(2)
$$

\# geverators of $\operatorname{so}(n)=\frac{n(n-1)}{2}$
So(3) $\rightarrow 3$ gevercetors
$S o(2) \Rightarrow 1$ yeverator
\#seneralin $\#_{s o(3)}^{\text {rewators }}=2 \rightarrow$ \# massless Bields
"Nambu - Golelstoree, kwons
(d) Ganging of $5 O(3)$:

$$
\left[\begin{array}{r}
\left.\Phi=\left(\begin{array}{l}
\varphi_{1} \\
\varphi_{2} \\
\varphi_{3}
\end{array}\right)\right] \Phi \rightarrow \Phi^{\prime}=0 \Phi \quad \text { (18) } \\
0 \rightarrow 0=0(x)
\end{array}\right.
$$

look at the kinetic part:

$$
\begin{aligned}
& \partial_{\mu} \Phi^{\top} \partial \mu \Phi^{\prime} \rightarrow \partial_{\mu}\left(\Phi^{\top} O^{\top}\right) \partial \mu(O \Phi) \\
& \partial \Phi^{\top}\left(\partial_{\mu} O^{\top}\right) O \partial_{\mu} \bar{\Phi}+\cdots
\end{aligned}
$$

What we have to do is madify the derinutive accordiugls, such thert it transfom coveniontly

$$
\partial_{\mu} \rightarrow D_{\mu}=\partial_{\mu}+A_{\mu}
$$

gange field [3×3 matrix] thet transforms in a manmen senet ensures

$$
\left(D_{\mu} \Phi\right)^{\prime}=0 D_{\mu} \Phi \quad \text { (20) }
$$

(e) The messes of the gauge field, (0/12) come from the covariant derivative of I. On top of the vacuum, we find

$$
m_{A_{1}}=m_{A_{2}}=g \frac{\mu}{\sqrt{\lambda}}, m_{A_{3}}=0
$$

Rroblem 2
©

$$
\left.\mathcal{L}_{0}=\frac{1}{2} \delta_{\mu} \rho_{a} \partial_{r} \rho_{a}+\frac{\mu^{2}}{2} \rho_{a} \varphi_{a}-\frac{\lambda}{4} \rho_{a} \varphi_{a}\right)^{2} \text {, (1) }
$$

with φ_{a} 's 2 real scalass $[a=1,2]$.

$$
\text { symmetry group }=\operatorname{so}(2)[v(1)]
$$

first let', understand writ happeus in terms of a_{1}, ϕ_{2} :

$$
\begin{gather*}
\binom{\phi_{1}}{\varphi_{2}} \rightarrow\binom{\varphi_{1}^{\prime}}{\varphi_{2}^{\prime}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{\varphi_{1}}{\varphi_{2}} \text { (2) } \\
\text { is } \varphi_{1}^{\prime}=\cos \theta \varphi_{1}+\sin \theta \varphi_{2} \\
\varphi_{2}^{\prime}=-\sin \theta \varphi_{1}+\cos \theta \varphi_{2} \tag{3}
\end{gather*}
$$

* gran states(vacua):
firrt we fical extema

$$
\frac{\partial V}{\partial \varphi_{1}}=\frac{\partial V}{\partial \varphi_{2}}=0,(u)
$$

and then we check whether thay correspers to minumes

$$
\frac{\partial^{2} v}{\partial \varphi_{1}^{2}}, \frac{\partial^{2} v}{\partial \varphi_{2}^{2}}, \frac{\partial^{2} v}{\partial \varphi_{1} \partial \varphi_{2}} \geqslant 0 \text {. (5) }
$$

from (4) (5) we find

$$
\{\underbrace{\left.\varphi_{1}=\phi_{2}=0\right\}}_{\text {maxim }} \text { or }\left\{\phi_{1}^{2}+\varphi_{c}^{2}=\frac{\mu^{2}}{d}\right\}(6)
$$

As before, we have the liberty to take cither

$$
\begin{equation*}
\varphi_{1}=0 \& \varphi_{2}=\frac{\mu}{\sqrt{\lambda}} \tag{7}
\end{equation*}
$$

or vide versa or whatever combination we live.

Initially we have $S^{\prime} O(2): 1$ generator
y "nothing"

1 massless mode in the theory λ exactly the sane as in Erodlen,

- Nether current associated with so(z) =

$$
\begin{equation*}
\dot{\delta}_{\mu}=\frac{\delta L_{0}}{\delta \partial_{\mu} \phi_{1}} \delta \phi_{1}+\frac{\delta \alpha_{0}}{\delta \partial_{\mu} \mathscr{I}_{2}} \delta \phi_{2} \tag{8}
\end{equation*}
$$

$\delta \varphi_{1}, \delta \varphi_{2}$ are the intinites ital $10(2)$ rotations of the Bields. From (3), we get

$$
\left.\delta \phi_{1}=\theta \phi_{2}, \delta \delta \phi_{2}=-\theta \phi_{2} . \text {. } \phi\right)
$$

So, from (1), (b) , (9), we get

$$
\dot{j}_{\mu}=\phi_{2} \partial_{\mu} \phi_{1}-\phi_{1} \partial_{\mu} \phi_{2} \quad \cdot(10)
$$

(6) We now take the following Lagrayim:

$$
\begin{gather*}
\left.\mathcal{L}=\frac{1}{2} \phi_{p} \phi_{a} \partial^{-} \phi_{a}+\frac{\mu^{2}}{2} \phi_{a} \phi_{a} \frac{-\lambda}{4} \varphi_{a} \varphi_{a}\right)^{2}+\epsilon V\left(\phi_{1}\right), \tag{11}\\
V\left(\varphi_{1}\right)=\text { function of } \phi_{1} \text { on }_{y}, \text { (12) }
\end{gather*}
$$

and ϵ is a small parameter. we look for minime of the potential.

$$
\begin{equation*}
\frac{\partial V}{\partial \phi_{1}}=\frac{\partial V}{\partial \varphi_{2}}=0 \tag{13}
\end{equation*}
$$

we find

$$
\phi_{1}\left(\mu^{2}-\lambda \varphi_{1} \varphi_{0}\right)+\epsilon V^{\prime}=0 \quad \Rightarrow \phi_{2}\left(\mu^{2}-\lambda \varphi_{a} p_{a}\right)=0,(14)
$$

from the above we notice the following options:
(i) $\phi_{2}=0 \leadsto \phi_{1} \simeq \frac{\mu}{\sqrt{\lambda}}+\epsilon \frac{\nu^{\prime}}{2 \mu^{2}}$, (15)
(ii) $\phi_{L} \neq 0 \rightarrow \phi_{1}=0, v^{\prime}=0$. (16)

In either cere (i), (ii), the spectrimen of the thong contains a particle whose mass is proportional to G, such tent aten the explicit breaking variknes It becomes the genuine N_{G} bison of the broken generator.

