Iroblem 1 (a) The Kown is the lowest mass particle, which contains an s-quark. Since only the weak interactions don't conserve flavor, the Kown can only decay via weak interoutions. P/R°) =- /R°) (6) PIK° > = - 1K°> C/K°> = 1K°> C | K° > = | K° > CP|K°>=-1K°> CP|K°>=-/K°> $|K_2\rangle = \frac{1}{\sqrt{2}} \left(|K^0\rangle + |\overline{K}^0\rangle \right)$ with CP |K1> = |K1> and (c) $|K_1\rangle = \frac{1}{\sqrt{2}!} (|K^{\circ}\rangle - |\overline{K}^{\circ}\rangle)$ $CP|K_z\rangle = -|K_z\rangle.$ (d) The 2-pion states are parity-even, while the 3-pion states are parity-add (in the ground state). =) $CP|\pi\pi\rangle = |\pi\pi\rangle$, $CP|\pi\pi\pi\rangle = -|\pi\pi\pi\rangle$ $L \rightarrow K_1 \rightarrow 2\pi$, $K_2 \rightarrow 3\pi$ So if we observe $K^{\circ} \rightarrow 2\pi$, then actually only the component $1K_1 > f 1K^{\circ} > = \frac{1}{\sqrt{2}}(1K_1 > + 1K_2 >)$ contributes to the decay. (e) Now the component 1K2> contributes. (f) $K^{\circ} \left\{ \begin{array}{c} d \longrightarrow S \\ \overline{S} \longrightarrow \overline{A} \end{array} \right\} \overline{K}^{\circ}$ K° $\begin{cases} d \rightarrow V^{\circ} \\ u \downarrow V \\ \overline{s} \end{cases} \overline{K^{\circ}}$

Ly There are also diagrams with ct instead of u, which are more suppressed due to smaller CKM-factors.

(9) The diagonal elements of Hweak = (m-1/2) -p2 describe the quantum mechanical (independent) timeevolution of 1K° > and 1K° >, with the imaginary piece The off-diagonal elements $\langle K^0|H_{weak}|K^0\rangle = -p^2$, $\langle K^0|H_{weak}|K^0\rangle = -p^2$, $\langle K^0|H_{weak}|K^0\rangle = -q^2$ are generated by the above loop diagrams. In p and g encode the (non-symmetric) dependence on the CKM - elements. • The eigenvalues of Hweak are $\lambda_{\pm} = m - \frac{i}{2}\Gamma \mp pq$, with the corresponding eigenvectors $v_{\pm} = \begin{pmatrix} p \\ \pm q \end{pmatrix}$, so we see that $1K_s^*$ and $1K_s^*$ are the eigenstates of Hweak. · We can read off the masses and life-times from 2; K_s° : $m_s = m - \text{Re}[pq]$, $\tau_s = (\Gamma + 2 \text{Im}[pq])^{-1}$ Kz: mz = m + Re[pg], 2= (1-2 lm[pg])-1 Ly la deriving 27, we chose the signs in m-17-2= +pq, such that the imaginary part of $\sqrt{p^2q^2}$ is positive, so we know that To < T. Experiment shows that ms < m2, so Re[pg] > 0.

a) The GKM matrix appears in the w-boson interaction terms, after gauge basis" to the "mass-basis". The GKM matrix reads

Vacm = (L") + Ld (1)

with L", Ld the transformation

matrices of up dob, respectively.

Since M(") is already diagonal,

the GRM meetrix is given by

Vacm = Ld. (2)

To find it, we need to actually lagonalize $M^{(2)}$

M(d) = Van Maingonal Van (3)

Verm confrises as columns the normalized agenvæletons et u'd! A straightformen Dexercise reveals that Vain = / 0 a - 6 (4) vitu c= Va²+b².
Lompany (4) to the votation L'omparing matrix cosomix - Sindaix

sindaix cosomix

o 0

we invedicately conclude that

Omix = arcfan(1/2) . (6)

Bosince flu matrix is real, there is

Iroblem 3

© once agein ne have a diagonal up-quark mass matrix, meaning Hest Vaun is such Heet

M(d) = Vaxm Malagonal Vaxm (1)

We find $V_{cxn} = \frac{1}{\sqrt{a^2 + 4b^2}} \begin{pmatrix} 2b & a \\ -a & 2b \end{pmatrix}, \quad (2)$ meaning flat

, (3) Dunix = arctan (26)

Since $m_s = \lambda$, m_s 6 Since

we find

Omix = arctan fins = 12,5°. (5)