Problem 1
(a) The Koan is the lowest mass pantile, which an s-quourk. Since only the weak interactions don't conserve flower, the Koan can only decay via weak interactions.
(6)

$$
\begin{array}{ll}
P\left|K^{0}\right\rangle=-\left|K^{0}\right\rangle, & P\left|\bar{K}^{0}\right\rangle=-\left|\bar{K}^{0}\right\rangle \\
C\left|K^{0}\right\rangle=\left|\bar{K}^{0}\right\rangle & , \quad C\left|\bar{K}^{0}\right\rangle=\left|K^{0}\right\rangle \\
C P\left|K^{0}\right\rangle=-\left|\bar{K}^{0}\right\rangle, & C P\left|\bar{K}^{0}\right\rangle=-\left|K^{0}\right\rangle
\end{array}
$$

(c)

$$
\begin{array}{ll}
\left|K_{1}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\right) & C P\left|K_{1}\right\rangle=\left|K_{1}\right\rangle \text { and } \\
\left|K_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right) & \text { with } \\
C P\left|K_{2}\right\rangle=-\left|K_{2}\right\rangle .
\end{array}
$$

(d) The 2-pion states are parity-even, while the 3-pion states are paritp-add (in the ground state).

$$
\Rightarrow C P|\pi \pi\rangle=|\pi \pi\rangle \quad, \quad C P|\pi \pi \pi\rangle=-|\pi \pi \pi\rangle
$$

$$
\rightarrow k_{1} \rightarrow 2 \pi, k_{2} \rightarrow 3 \pi
$$

So of we deserve $K^{0} \rightarrow 2 \pi$, then mutually only the component $\left|K_{1}\right\rangle$ of $\left|K^{0}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K_{1}\right\rangle+\left|K_{2}\right\rangle\right)$ contritortes to the decoy.
(e) Now the component $\left|K_{2}\right\rangle$ contributes.
(f)

\leftrightarrow There are also diagrams with E^{+}t instead of U, which are mare suppressed due to smallen CKM-factors.
(g). The diagonal elements of $H_{\text {weak }}=\left(\begin{array}{cc}m-\frac{1}{2} & -p^{2} \\ -q^{2} & m-\frac{i}{2} \Gamma\end{array}\right)$ describe the quantum nechansial (independent) timeevdution of $\left|K^{\circ}\right\rangle$ and $\left|\bar{K}^{\circ}\right\rangle$, with the imaginary piece niP due to decoys.

- The off-diagomal elements $\left\langle K^{0}\right| H_{\text {weak }}\left|\bar{K}^{0}\right\rangle=-p^{2}$, $\left\langle\bar{K}^{\circ}\right| H_{\text {mean }}\left|K^{0}\right\rangle=-q^{2}$ are generated by the above loop diagrams. $\rightarrow p$ and q encode the (non-yymmetrii) dependence on the CKM -elements.
- The eigenvalues of H wreak are $\lambda_{\bar{\mp}}=m-\frac{i}{2} \Gamma_{\bar{F}} p q$, with the corresponding eigenvectors $v_{F}=\binom{p}{ \pm q}$, so we see that $\left|K_{s}^{\circ}\right\rangle$ and $\left|K_{L}^{0}\right\rangle$ are the eigenstates of $H_{\text {weak. }}$
- We coin read off the masses and liff-times from λ_{\mp} :

$$
\begin{array}{ll}
K_{s}^{0}: m_{s}=m-R e[p q], & r_{s}=(\Gamma+2 \ln [p q])^{-1} \\
K_{L}^{0}: m_{L}=m+\operatorname{Re}[p q], & r_{L}=(\Gamma-2 \ln [p q])^{-1}
\end{array}
$$

\rightarrow In deriving λ_{\mp}, we chose the signs in $m-\frac{i}{2} \Gamma-\lambda= \pm p q$, such that the imaginary part of $\sqrt{p^{2} q^{2}}$ is positive so we known that $\tau_{s}<\tau_{L}$. Experiment shows that $m_{s}<m_{L}$, so $\operatorname{Re}[\rho q]>0$.

Problem 2
(a) The GikM matrix appears in the w-boson interaction terms, after going from the "gauge basis" to the "mass-basis". The G'kM matrix reads

$$
\begin{equation*}
V_{a M}=\left(L^{*}\right)^{+} L^{d} \tag{1}
\end{equation*}
$$

with L^{\prime}, L^{d} the transformation matrices of $u_{L} d d_{L}$, respectively. since $\mu^{(u)}$ is already diagonal, the GikM-matrix is given by

$$
V_{C F M}=L^{\alpha} \text {. (2) }
$$

To find it, we need to actually diagonalize $\mu^{(l)}$,

$$
\begin{equation*}
\mu^{(l)}=V_{a k \mu} \mu_{\text {diagonal }}^{(d)} V_{\text {ck } \mu}^{+} \text {. } \tag{3}
\end{equation*}
$$

Van couprises as columns the normalized eigenvectors et Midi.

A straightforward exercise reveals that

$$
\operatorname{VCrn}=\left(\begin{array}{ccc}
0 & \frac{a}{c} & \frac{-b}{c} \\
0 & \frac{b}{c} & \frac{a}{c} \\
1 & 0 & 0
\end{array}\right), \text { (4) }
$$

with $c=\sqrt{a^{2}+b^{2}}$
Comparing (u) to the rotation matrix

$$
\left(\begin{array}{ccc}
0 & \cos \theta_{m, x} & -\sin \theta_{\text {mix }} \\
0 & \sin \theta_{\text {mix }} & \cos \theta_{\text {mix }} \\
1 & 0 & 0
\end{array}\right), \text { (5) }
$$

we iwnediately conclude that

$$
\theta_{\text {mix }}=\arctan \left(\frac{b}{e}\right) \cdot(6)
$$

(b) Since the matrix is real, there is no \mathcal{L} violation.

Problem 3
e) Once again we have a diagonal up-quask mass matrix, meaning that Van is such that

$$
\mu^{(d)}=V_{\text {KM }} \mu_{\text {diagonal }}^{\text {(d) }} V_{\text {aKA. }}^{+} \text {(1) }
$$

We find

$$
V_{\text {KM }}=\frac{1}{\sqrt{a^{2}+4 b^{2}}}\left(\begin{array}{cc}
2 b & a \\
-a & 2 b
\end{array}\right) \text {, (2) }
$$

meaning that

$$
\theta_{\text {mix }}=\arctan \left(\frac{a}{26}\right),(3)
$$

(b) Since

$$
m_{s}=\lambda_{1} \simeq 2 m_{b}, \quad m_{l}=\lambda_{2} \simeq-\frac{a^{2} m}{2 b},(4)
$$

we find

$$
\theta_{\text {mix }} \simeq \arctan \sqrt{\frac{m d}{m s}} \simeq 12,5^{\circ}
$$

