
Fakultät für Physik im SoSe 2022

TMP - TA3: Condensed Matter Many-Body-Physics

and Field Theory I

Dozent: Prof. Dr. Fabian Grusdt
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Problem 1 Small and large Fermi surfaces in the Hubbard model

In this problem we apply the Luttinger theorem for Fermi liquids, which states:
For a Fermi liquid, independent of the underlying interactions, the volume enclosed by the Fermi
surface is given by the number of the underlying fermions N↑ = N↓ = N/2. In two dimenions:

VFS
2π2

=
N

LxLy
mod2 (1)

where Lx, Ly are the linear system sizes along x and y. Similar results hold in higher dimensions.

(2.a) When a translational symmetry is spontaneously broken, Luttinger’s theorem can be applied
for the resulting reduced Brillouin zone. Show for the case of a Néel state, i.e. for a square
lattice with a broken sub-lattice symmetry, that Luttinger’s theorem in the reduced magnetic
Brillouin zone (MBZ) becomes:

V MBZ
FS

2π2
= Z− p (2)

where p denotes the hole doping, i.e.

N = LxLy(1− p). (3)

Consider a spin-balanced system where N↑ = N↓ = N/2.

(2.b) Perform a particle-hole mapping, ĉj,σ → ĥ†j,σ, and show Luttinger’s theorem formulated for
the hole-fermi surface becomes:

V h
FS

2π2
≡ Nh

LxLy
mod 2. (4)

Here Nh denotes the number of (spin-full) holes and V h
FS = (2π)2 − VFS.

(2.c) Combine your results from (a) and (b) to show that:

V h
FS

2π2
≡ 1 + p mod 2 large FS (5)

for translationally invariant systems, and

V h
FS

2π2
≡ p mod 1 small FS (6)

for a broken translational symmetry in the case of a Néel state.
1If you would like to present your solution(s), feel free to send them to Henning Schlömer until Fri, July 15.
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Problem 2 Generalized RPA calculation

Consider the Fermi-Hubbard model with nearest-neighbor tunneling t and on-site interactions U
between the two spin states σ =↑, ↓.

(2.a) Using the Hartree-Fock decoupling, derive the equations of motion for

ρ̂p,q,σ = ĉ†p+q,σ ĉp,σ (7)

in the generalized RPA approximation (as defined in the script) – i.e. include direct and
exchange terms and approximate

〈ĉ†p+q,σ ĉp,σ′〉 ≈ δq,0δσ,σ′nF
p (T ). (8)

(2.b) From the equations of motion in (2.a) [the result can also be found in the script] derive the
generalized RPA (gRPA) response functions for charge and spin:

χc
gRPA(q, ω) =

χ0(q, ω)

1− χ0(q, ω)U/Ld
, χs

gRPA(q, ω) =
χ0(q, ω)

1 + χ0(q, ω)U/Ld
. (9)

where L is the linear system size, d is the dimensionality and χ0(q, ω) denotes the free-fermion
susceptibility.

Problem 3 Antiferromagnetism in the Fermi-Hubbard model

In this problem we consider the 2D Fermi-Hubbard model at half filling, 〈n̂j,σ〉 = 1/2, and show
that the model has an antiferromagnetic (AFM) instability.

(3.a) At weak coupling, U � t, show that the spin-susceptibility χsgRPA(q, ω) has an instability
(divergence) at ω = 0 around q = (π, π) ≡ Q, indicating an AFM instability.

(3.b) At finite temperature T and weak coupling, U � t, it can be shown that (you don’t have to
show this):

χ0(Q, ω = 0, T )/Ld ≈ 1

2π2t
log2

(
16eγ

π

t

T

)
+ C0

1

t
, (10)

where Q = (π, π) and two constants γ = 0.5772... (Euler’s constant) and C0 = −0.0166...
show up.

From Eq. (10), derive an estimate for the critical Néel temperature TN where antiferroma-
gnetism sets in and χsgRPA diverges.

(3.c) At strong coupling, U � t, use second-order perturbation theory in t/U to show that the
half-filled Fermi-Hubbard model can be mapped to a Heisenberg model:

Ĥ = J
∑
〈i,j〉

Ŝi · Ŝj , J =
4t2

U
(11)

up to an overall energy shift.
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