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Problem 1 Small and large Fermi surfaces in the Hubbard model

In this problem we apply the Luttinger theorem for Fermi liquids, which states:
For a Fermi liquid, independent of the underlying interactions, the volume enclosed by the Fermi
surface is given by the number of the underlying fermions Ny = N| = N/2. In two dimenions:
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where L,, L, are the linear system sizes along x and y. Similar results hold in higher dimensions.

(2.a) When a translational symmetry is spontaneously broken, Luttinger's theorem can be applied
for the resulting reduced Brillouin zone. Show for the case of a Néel state, i.e. for a square
lattice with a broken sub-lattice symmetry, that Luttinger's theorem in the reduced magnetic
Brillouin zone (MBZ) becomes:
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where p denotes the hole doping, i.e.
N=L,L,(1—-p). (3)

Consider a spin-balanced system where Ny = N, = N/2.

(2.b) Perform a particle-hole mapping, ¢; , — hl. . and show Luttinger's theorem formulated for

the hole-fermi surface becomes:
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Here Nj, denotes the number of (spin-full) holes and Vi = (27)? — Vis.

(2.c) Combine your results from (a) and (b) to show that:
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for translationally invariant systems, and
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for a broken translational symmetry in the case of a Néel state.

1if you would like to present your solution(s), feel free to send them to Henning Schlémer until Fri, July 15.
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Problem 2 Generalized RPA calculation

Consider the Fermi-Hubbard model with nearest-neighbor tunneling ¢t and on-site interactions U
between the two spin states o =7, |.

(2.a) Using the Hartree-Fock decoupling, derive the equations of motion for

ﬁpyq7o— = é;+q706paa— (7)

in the generalized RPA approximation (as defined in the script) — i.e. include direct and
exchange terms and approximate

<é;+q7aép7ff’> ~ 5(],050,0””5 (T). (8)

(2.b) From the equations of motion in (2.a) [the result can also be found in the script| derive the
generalized RPA (gRPA) response functions for charge and spin:
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where L is the linear system size, d is the dimensionality and x(q, w) denotes the free-fermion
susceptibility.
Problem 3 Antiferromagnetism in the Fermi-Hubbard model

In this problem we consider the 2D Fermi-Hubbard model at half filling, (n;,) = 1/2, and show
that the model has an antiferromagnetic (AFM) instability.

(3.2) At weak coupling, U < ¢, show that the spin-susceptibility xggrpa(q,w) has an instability
(divergence) at w = 0 around g = (7w, 7) = Q, indicating an AFM instability.

(3.b) At finite temperature 7" and weak coupling, U < t, it can be shown that (you don't have to

show this):
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where Q = (7, 7) and two constants 7 = 0.5772... (Euler's constant) and Cy = —0.0166...
show up.

From Eq. (10]), derive an estimate for the critical Néel temperature T\ where antiferroma-
gnetism sets in and xgrpa diverges.

(3.c) At strong coupling, U > t, use second-order perturbation theory in ¢/U to show that the
half-filled Fermi-Hubbard model can be mapped to a Heisenberg model:
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up to an overall energy shift.
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