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Problem 1 Landau parameters

In this problem we consider a fluid of fermions described by the Hamiltonian

Ĥ =
∑
p,σ

εpn̂p,σ +
λ

2

∑
pσ,p′σ′,q

V (q)ĉ†p−q,σ ĉ
†
p′+q,σ′ ĉp′,σ′ ĉp,σ, (1)

where εp is the energy of the non-interacting Fermi gas and λ� 1 is the perturbative interaction
strength; Moreover,

V (q) =

ˆ
d3r e−iq·rV (r) (2)

denotes the Fourier transform of the interaction V (r).

(1.a) Using first-order perturbation theory in λ, derive the Landau interaction parameters fa,sp,p′ for
the Fermi liquid.

(1.b) Consider the following interactions,

V1(r) = λ1δ
(3)(r), V2(r) = −λ2∇2δ(3)(r), (3)

and calculate the Landau parameters.

(1.c) When a uniform external field (chemical potential or magnetic field) is applied, the Fermi
liquid responds by becoming polarized. In addition to the free-fermion response, interactions
can suppress or enhance the latter, and in extreme cases the system becomes unstable. Since
the feedback of interactions is determined by the Landau parameters, the instability can
be shown to occur at F s

l = −1 (Pomeranchuk instability, density response) and F a
l = −1

(Stoner instability, spin response).

Taking your results from (1.b) literally, sketch the regions of λ1,2 where the Fermi surface
becomes unstable.

Problem 2 Hubbard-Stratonovich decoupling of the Coulomb interaction - part 1

Here we consider electrons in three dimensions with mass m and Coulomb interactions

Ĥint =
1

2

ˆ
d3xd3x′ ρ̂(x)ρ̂(x′)

e2

4πε0|x− x′|
. (4)

1If you would like to present your solution(s), feel free to send them to Felix Palm until Fri, July 08.
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The goal is to perform a Hubbard-Stratonovich decoupling and show that the system can be
described by the path integral:

Z =

ˆ
D[ψ∗, ψ, φ] exp

[
−
ˆ β

0

dτ

ˆ
d3x

{
ψ∗
(
∂τ −

1

2m
∇2 + eφ− µ

)
ψ − ε0

2
(∇φ)2

}]
(5)

(2.a) Formulate the path integral for Z starting from Eq. (4).

(2.b) Express the Coulomb interaction in Fourier modes by writing

ρ(x) =

ˆ
d3q

(2π)3
ρq e

iq·x (6)

and calculating V (q).

(2.c) Add the auxiliary white-noise variable φq = iφ̃q – integrated over the imaginary axis, i.e.´∞
−∞ dφ̃q in the path integral – with the contribution to the action:

Zφ =

ˆ
D[φ] exp

[
−
ˆ β

0

dτ

ˆ
d3q

(2π)3

{
−1

2
ε0q

2φqφ−q

}]
(7)

Show that Zφ is convergent.

(2.d) Before we apply the Hubbard-Stratonovich decoupling, consider a general repulsive interaction

Hint =
g
2

∑
j A

2
j with g > 0 and show that it can be replaced by

∑
j

(
ϕjAj −

ϕ2
j

2g

)
when

adding the Hubbard-Stratonovich white-noise field qj = iϕj + igAj.

(2.e) Continue from (2.c) and apply the technique from (2.d) to derive the path-integral in Eq. (5).

Problem 3 Hubbard-Stratonovich decoupling of the Coulomb interaction - part 2

Here we consider electrons in three dimensions with mass m and Coulomb interactions as in
Problem 2. Our starting point is the path-integral formulation with the Hubbard-Stratonovich field
φ in Eq. (5).

(3.a) Perform the fermionic Gaussian integrals
´
D[ψ∗, ψ] in Eq. (5) and derive the effective action

Seff [φ].

(3.b) You may now assume that the saddle-point of Seff [φ] corresponds to φ ≡ 0. To expand Seff

up to quadratic order in φ, write

Ĝ−1 ≡ Ĝ−1
0 + eφ, (8)

with the free electron propagator Ĝ−1
0 = ∂τ + q̂2/2m− µ. As we are expanding around a

saddle-point, the term linear in φ vanishes. Calculate all terms of order φ2.
Hint: For operators Â = Â0 + ϕ̂ one may expand:

tr log Â = tr log Â0 + tr
(
Â−1

0 ϕ̂
)
− 1

2
tr
(
Â−1

0 ϕ̂Â−1
0 ϕ̂

)
+O(ϕ̂3) (9)

(3.c) Simplify your results in (3.b) and show that the effective action takes the form

Seff [φ] =
∑
ωn

ˆ
d3q

(2π)3

{
−1

2

1

Ṽ (q, ωn)
φqφ−q

}
(10)

with an effective screened Coulomb interaction Ṽ (q) = V (q)/ε(q, ωn). Derive an expression
for ε(q, ωn).
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