

Sheet 8:

Hand-out: Friday, June 17, 2022 ${ }^{[1]}$

Problem 1 Fermionic coherent states

In this problem we show some basic properties of fermionic coherent states. We will denote by c and c^{*} the Grassman variables corresponding to the set of fermionic operator \hat{c} and \hat{c}^{\dagger}.
(1.a) Show that the overlap of two coherent states is

$$
\begin{equation*}
\left\langle c^{*} \mid c\right\rangle=e^{c^{*} c} . \tag{1}
\end{equation*}
$$

(1.b) Show the completeness relation,

$$
\begin{equation*}
\int d c^{*} d c|c\rangle\left\langle c^{*}\right| e^{-c^{*} c}=1 \tag{2}
\end{equation*}
$$

Hint: Start from the left hand side and use the explicit representation $|c\rangle=|0\rangle+|1\rangle c$.
(1.c) Show the trace formula:

$$
\begin{equation*}
\operatorname{tr} \hat{A}=\int d c^{*} d c e^{-c^{*} c}\left\langle-c^{*}\right| \hat{A}|c\rangle . \tag{3}
\end{equation*}
$$

Hint: Show first that: $\delta_{n, m}=\langle n \mid m\rangle=\int d c^{*} d c e^{-c^{*} c}\left\langle-c^{*} \mid m\right\rangle\langle n \mid c\rangle$, for $n, m=0,1$ labeling Fock states.

Problem 2 Residue integration

In this problem we use residue integration to calculate observables from the Green's function. We consider a free Fermi gas with spin S in continuum,

$$
\begin{equation*}
\hat{\mathcal{H}}=\sum_{\sigma} \int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}} \varepsilon_{\boldsymbol{k}} \hat{\psi}_{\sigma}^{\dagger}(\boldsymbol{k}) \hat{\psi}_{\sigma}(\boldsymbol{k}), \quad \varepsilon_{\boldsymbol{k}}=\frac{\hbar^{2} \boldsymbol{k}^{2}}{2 m} \tag{4}
\end{equation*}
$$

with Fermi wavevector of length k_{F}.
(2.a) Show that the homogeneous density can be written as:

$$
\begin{equation*}
\langle\hat{\rho}(\boldsymbol{x})\rangle \equiv \sum_{\sigma}\left\langle\hat{\psi}_{\sigma}^{\dagger}(\boldsymbol{x}) \hat{\psi}_{\sigma}(\boldsymbol{x})\right\rangle=-\left.i(2 S+1) \mathcal{G}\left(\boldsymbol{x}, t=0^{-}\right)\right|_{\boldsymbol{x}=0} . \tag{5}
\end{equation*}
$$

and the homogeneous kinetic energy density as:

$$
\begin{equation*}
\langle\hat{T}(\boldsymbol{x})\rangle \equiv-\frac{\hbar^{2}}{2 m} \sum_{\sigma}\left\langle\hat{\psi}_{\sigma}^{\dagger}(\boldsymbol{x}) \boldsymbol{\nabla}_{\boldsymbol{x}}^{2} \hat{\psi}_{\sigma}(\boldsymbol{x})\right\rangle=\left.i(2 S+1) \frac{\hbar^{2}}{2 m} \boldsymbol{\nabla}_{\boldsymbol{x}}^{2} \mathcal{G}\left(\boldsymbol{x}, 0^{-}\right)\right|_{\boldsymbol{x}=0} . \tag{6}
\end{equation*}
$$

Here $\mathcal{G}(\boldsymbol{x}, t)$ denotes the two-particle Green's function.

[^0](2.b) Write out Fourier transforms to show that:
\[

$$
\begin{equation*}
\langle\hat{\rho}(\boldsymbol{x})\rangle=(2 S+1) \int \frac{d^{d} \boldsymbol{k}}{(2 \pi)^{d}}\left[\int \frac{d \omega}{2 \pi i} e^{i \omega \delta} \frac{1}{\omega-\varepsilon_{\boldsymbol{k}}+i \delta \operatorname{sgn}\left(k-k_{F}\right)}\right], \quad \delta \rightarrow 0^{+} . \tag{7}
\end{equation*}
$$

\]

and find a similar expression for $\langle\hat{T}(\boldsymbol{x})\rangle$.
(2.c) Perform residue integrals to show that in $d=3$ dimensions:

$$
\begin{equation*}
\langle\hat{\rho}(\boldsymbol{x})\rangle=(2 S+1) \frac{V_{F}}{(2 \pi)^{3}}, \quad\langle\hat{T}(\boldsymbol{x})\rangle=\frac{3}{5} \varepsilon_{F}\langle\hat{\rho}(\boldsymbol{x})\rangle . \tag{8}
\end{equation*}
$$

Here V_{F} is the volume enclosed by the Fermi surface at the Fermi energy ε_{F}.

Problem 3 Spin coherent states

In this exercise, we introduce so-called spin-coherent states, which can be used to define path integrals of quantum-spin Hamiltonians. Spin coherent states are defined by rotating the fully polarized state $|S, S\rangle$ - with $\hat{\boldsymbol{S}}^{2}|S, S\rangle=S(S+1)|S, S\rangle$ and $\hat{S}^{z}|S, S\rangle=S|S, S\rangle$ - by angles θ around the y-axis and ϕ around the z-axis:

$$
\begin{equation*}
|\boldsymbol{\Omega}\rangle=e^{i \hat{S}^{z} \phi} e^{i \hat{S}^{y} \theta} e^{i \hat{S}^{z} \chi}|S, S\rangle . \tag{9}
\end{equation*}
$$

Here $\boldsymbol{\Omega}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$ is a unit vector, and χ is a gauge freedom adding an overall phase. Their following properties will be useful:

$$
\begin{equation*}
\frac{2 S+1}{4 \pi} \int d \boldsymbol{\Omega}|\boldsymbol{\Omega}\rangle\langle\boldsymbol{\Omega}|=1, \quad \operatorname{tr} \hat{A}=\frac{2 S+1}{4 \pi} \int d \boldsymbol{\Omega}\langle\boldsymbol{\Omega}| \hat{A}|\boldsymbol{\Omega}\rangle \tag{10}
\end{equation*}
$$

where $d \boldsymbol{\Omega}=d \theta \sin \theta d \phi$, and:

$$
\begin{equation*}
\left\langle\boldsymbol{\Omega} \mid \boldsymbol{\Omega}^{\prime}\right\rangle=\left(\frac{1+\boldsymbol{\Omega} \cdot \boldsymbol{\Omega}^{\prime}}{2}\right)^{S} e^{-i S \psi}, \quad \psi=2 \arctan \left[\tan \left(\frac{\phi-\phi^{\prime}}{2}\right) \frac{\cos \left[\left(\theta+\theta^{\prime}\right) / 2\right]}{\cos \left[\left(\theta-\theta^{\prime}\right) / 2\right]}\right]+\chi-\chi^{\prime} \tag{11}
\end{equation*}
$$

(3.a) Construct the spin-coherent path integral, i.e. show that:

$$
\begin{equation*}
Z \equiv \operatorname{tr} \mathcal{T}_{\tau} e^{-\int_{0}^{\beta} d \tau \hat{\mathcal{H}}(\tau)}=\int \mathcal{D} \boldsymbol{\Omega}(\tau) \exp (-\mathcal{S}[\boldsymbol{\Omega}(\tau)]) \tag{12}
\end{equation*}
$$

with the action:

$$
\begin{equation*}
\mathcal{S}[\boldsymbol{\Omega}(\tau)]=-i S \sum_{j} \omega\left[\boldsymbol{\Omega}_{j}\right]+\int_{0}^{\beta} d \tau\langle\boldsymbol{\Omega}(\tau)| \hat{\mathcal{H}}(\tau)|\boldsymbol{\Omega}(\tau)\rangle \tag{13}
\end{equation*}
$$

Here j labels different spins in a lattice, and we defined

$$
\begin{equation*}
\exp [i S \omega[\boldsymbol{\Omega}]]=\prod_{n=1}^{N}\left\langle\boldsymbol{\Omega}\left(\tau_{n}+\delta \tau\right) \mid \boldsymbol{\Omega}\left(\tau_{n}\right)\right\rangle, \quad \tau_{n}=n \delta \tau, \delta \tau=\beta / N \tag{14}
\end{equation*}
$$

Which boundary conditions does $\Omega(\tau)$ in the path integral obey?
(3.b) Simplify the contribution $\omega[\boldsymbol{\Omega}]$ to the action by assuming continuous differentiable trajectories and show that:

$$
\begin{equation*}
\omega[\boldsymbol{\Omega}]=-\int_{0}^{\beta} d \tau\left(\partial_{\tau} \phi\right) \cos [\theta]+\partial_{\tau} \chi \tag{15}
\end{equation*}
$$

By choosing the gauge convention $\chi_{j}(\tau) \equiv 0$, simplify the result further and show that:

$$
\begin{equation*}
\omega[\boldsymbol{\Omega}]=-\oint_{\phi_{0}}^{\phi_{\beta}} d \phi \cos (\theta) . \tag{16}
\end{equation*}
$$

Discuss how this Berry-phase contribution is geometric and does not depend on the explicit time-dependence of $\phi(\tau)$.
(3.c) Construct the effective action S for a Heisenberg interaction:

$$
\begin{equation*}
\hat{\mathcal{H}}=J \sum_{\langle i, j\rangle} \hat{\boldsymbol{S}}_{i} \cdot \hat{\boldsymbol{S}}_{j} . \tag{17}
\end{equation*}
$$

Hint: Show first that $\boldsymbol{\Omega} \cdot \hat{\boldsymbol{S}}|\boldsymbol{\Omega}\rangle=S|\boldsymbol{\Omega}\rangle$.
(3.d) Discuss on generic grounds and using the above path-integral formalism why $S \rightarrow \infty$ corresponds to the classical limit.

[^0]: ${ }^{1}$ If you would like to present your solution(s), feel free to send them to Felix Palm until Fri, June 24.

