

## Sheet 7:

Hand-out: Friday, June 10, 2022¹

## Problem 1 Green's functions

In this problem we calculate some important Green's functions which we saw in the lecture.
(1.a) For a bosonic field $\hat{\phi}_{\boldsymbol{q}}=\sqrt{\hbar /\left(2 m \omega_{\boldsymbol{q}}\right)}\left(\hat{a}_{\boldsymbol{q}}+\hat{a}_{-\boldsymbol{q}}^{\dagger}\right)$ and a Hamiltonian $\hat{\mathcal{H}}_{0}=\sum_{\boldsymbol{q}} \omega_{\boldsymbol{q}}\left(\hat{a}_{\boldsymbol{q}}^{\dagger} \hat{a}_{\boldsymbol{q}}+1 / 2\right)$, show that

$$
\begin{equation*}
D(\boldsymbol{q}, t) \equiv-i\langle 0| \mathcal{T}_{\boldsymbol{\phi}}^{\boldsymbol{q}},(t) \hat{\phi}_{-\boldsymbol{q}}(0)|0\rangle=-i \frac{\hbar}{2 m \omega_{\boldsymbol{q}}}\left[\theta(t) e^{-i \omega_{\boldsymbol{q}} t}+\theta(-t) e^{i \omega_{\boldsymbol{q}} t}\right] \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
D(\boldsymbol{q}, \nu)=\frac{\hbar}{2 m \omega_{\boldsymbol{q}}}\left[\frac{1}{\nu-\left(\omega_{\boldsymbol{q}}-i 0^{+}\right)}+\frac{1}{-\nu-\left(\omega_{\boldsymbol{q}}-i 0^{+}\right)}\right] . \tag{2}
\end{equation*}
$$

(1.b) For a fermionic field $\hat{c}_{\boldsymbol{k}, \sigma}$ and a Hamiltonian $\hat{\mathcal{H}}_{0}=\sum_{\boldsymbol{k}, \sigma} \varepsilon_{\boldsymbol{k}} \hat{c}_{\boldsymbol{k}, \sigma}^{\dagger} \hat{c}_{\boldsymbol{k}, \sigma}$ with ground state $\left|\psi_{0}\right\rangle=\prod_{\sigma,|\mathbf{k}|<k_{F}} \hat{c}_{\mathbf{k}, \sigma}^{\dagger}|0\rangle$, show that

$$
G_{\sigma, \sigma^{\prime}}\left(\boldsymbol{k}, \boldsymbol{k}^{\prime} ; t\right) \equiv-i\left\langle\psi_{0}\right| \mathcal{T} \hat{c}_{\boldsymbol{k}, \sigma}(t) \hat{c}_{\boldsymbol{k}^{\prime}, \sigma^{\prime}}^{\dagger}(0)\left|\psi_{0}\right\rangle=\delta_{\boldsymbol{k}, \boldsymbol{k}^{\prime}} \delta_{\sigma, \sigma^{\prime}} \begin{cases}-i \theta\left(|\boldsymbol{k}|-k_{F}\right) e^{-i \varepsilon_{\boldsymbol{k}} t} & t>0  \tag{3}\\ i \theta\left(k_{F}-|\boldsymbol{k}|\right) e^{-i \varepsilon_{\boldsymbol{k}} t} & t<0\end{cases}
$$

and

$$
\begin{equation*}
G(\boldsymbol{k}, \omega)=\frac{1}{\omega-\varepsilon_{\boldsymbol{k}}+i 0^{+} \operatorname{sgn}\left(\varepsilon_{\boldsymbol{k}}\right)} . \tag{4}
\end{equation*}
$$

Here $k_{F}$ denotes the Fermi momentum.

## Problem 2 Using Grassman integrals

In this exercise, we use Grassman integrals to prove the following identity:

$$
\operatorname{det}\left(\begin{array}{cc}
A & B  \tag{5}\\
C & D
\end{array}\right)=\operatorname{det}\left[A-B D^{-1} C\right] \operatorname{det} D
$$

for square matrices $A, D$ of size $N \times N$ and $M \times M$ respectively; $B$ and $C$ are matrices of corresponding sizes. To this end, recall first that

$$
\operatorname{det}\left(\begin{array}{cc}
A & B  \tag{6}\\
C & D
\end{array}\right)=\int \prod_{j=1}^{N} d \alpha_{j}^{*} d \alpha_{j} \prod_{k=1}^{M} d \beta_{k}^{*} d \beta_{k} \exp \left[\left(\alpha^{*}, \beta^{*}\right)\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\binom{\alpha}{\beta}\right]
$$

with vectors of Grassman numbers $\alpha, \alpha^{*}, \beta, \beta^{*}$ of lengths $N, N, M, M$, respectively.

[^0](2.a) Separate the expression Eq (6) into an inner and an outer integral, by writing
\[

\operatorname{det}\left($$
\begin{array}{cc}
A & B  \tag{7}\\
C & D
\end{array}
$$\right)=\int \prod_{j=1}^{N} d \alpha_{j}^{*} d \alpha_{j} \exp \left[-\alpha^{*} A \alpha\right] Y\left[\alpha^{*}, \alpha\right]
\]

and find an expression for $Y\left[\alpha^{*}, \alpha\right]$ as a Grassman integral over $\beta^{*}$ and $\beta$.
(2.b) Solve the inner integral and show that its result is given by

$$
\begin{equation*}
Y\left[\alpha^{*}, \alpha\right]=\operatorname{det}(D) \exp \left[\alpha^{*} B D^{-1} C \alpha\right] . \tag{8}
\end{equation*}
$$

Hint: Use the following Gaussian Grassman integral:

$$
\begin{equation*}
\int \prod_{j} d \eta_{j}^{*} d \eta_{j} \exp \left[-\eta^{*} A \eta+j^{*} \eta+\eta^{*} j\right]=\operatorname{det}(A) \exp \left[j^{*} A^{-1} j\right] \tag{9}
\end{equation*}
$$

for matrix $A$ and vectors of Grassman numbers $j$ and $j^{*}$.
(2.c) Use the result from (2.b) to solve the outer integral in (2.a). This way, show the identity Eq. (5).

## Problem 3 Generating functionals

In this problem we derive the relation between the free-particle $S$-matrix and the generating functional containing the Green's function:

$$
\begin{align*}
& S\left[\eta^{*}, \eta\right] \equiv\langle 0| \mathcal{T} \exp \left[-i \int_{-\infty}^{\infty} d t \quad\left(\eta^{*}(t) \hat{\psi}(t)+\hat{\psi}^{\dagger}(t) \eta(t)\right)\right]|0\rangle= \\
&=\exp \left[-i \int_{-\infty}^{\infty} d t \eta^{*}(t) G\left(t-t^{\prime}\right) \eta(t)\right] \tag{10}
\end{align*}
$$

Here, $\hat{\psi}$ is a bosonic or fermionic field operator and $\eta(t)$ is a time-dependent $\mathbb{C}$ or Grassman number, respectively.
(3.a) Start with the case where $\hat{\psi}(t)=\hat{a}(t)=e^{-i \omega t} \hat{a}$ is a bosonic field in the interaction picture as introduced in the lecture. First, introduce $N$ small time steps $\Delta \tau=2 \tau / N$ to write out the time-ordered exponential in the first line of Eq. (10), where the integration limits are from $-\tau$ to $\tau$, and later $N \rightarrow \infty, \tau \rightarrow \infty$.
(3.b) In (3.a) you obtain a product over many exponentials. Factorize each exponential into parts containing only $\hat{a}$ and $\hat{a}^{\dagger}$ operators, respectively.
Hint: For $\hat{A}$ and $\hat{B}$ with $[[\hat{A}, \hat{B}], \hat{A}]=[[\hat{A}, \hat{B}], \hat{B}]=0$, it holds:

$$
\begin{equation*}
\exp [\hat{A}+\hat{B}]=\exp [\hat{B}] \exp [\hat{A}] \exp [[\hat{A}, \hat{B}] / 2] \tag{11}
\end{equation*}
$$

(3.c) Use the result from (3.b) to normal-order the expression. This will allow you to evaluate $S\left[\eta^{*}(t), \eta(t)\right]$ explicitly.
(3.d) Compare your result in (3.c) with the second line of Eq. (10) to show the equality of both expressions in Eq. (10). You may use that for free bosons

$$
\begin{equation*}
G\left(t-t^{\prime}\right)=-i \theta\left(t-t^{\prime}\right) e^{-i \omega\left(t-t^{\prime}\right)} \tag{12}
\end{equation*}
$$

(3.e) Repeat (3.a) - (3.d) for the fermionic driven oscillator with $\hat{\psi}(t)=\hat{c}(t)=e^{-i \epsilon t} \hat{c}$ and Grassman numbers $\eta(t)$ !
Hint: Do the calculation separately for $\epsilon>0$ (particles) and $\epsilon<0$ (holes), where in the latter case the ground state is not $|0\rangle$, but $\left|\psi_{0}\right\rangle=c^{\dagger}|0\rangle$ (hole vacuum). Thus, in 3(c) use anti-normal-order for $\epsilon<0$.


[^0]:    ${ }^{1}$ If you would like to present your solution(s), feel free to send them to Henning Schlömer until Fri, June 17.

