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Problem 1 Solution of the XY model in a field

In this problem we solve the general XY spin-chain in an external field, described by the Hamiltonian

Ĥ = −1

2

L∑
j=1

[
(1 + ∆) σ̂xj σ̂

x
j+1 + (1−∆) σ̂yj σ̂

y
j+1 + 2Bσ̂zj

]
. (1)

Assume periodic boundary conditions, i.e σ̂µL+1 ≡ σ̂1.

(1.a) Define fermionic operators ĉj by attaching a Jordan-Wigner string F̂j to the spin operators.
Show that the Jordan-Wigner string can be written as

F̂j =

j∏
i=1

−1
(

1− 2ĉ†i ĉi

)
. (2)

(1.b) Show that the Hamiltonian commutes with the parity operator P̂ =
∏L

j=1 σ̂
z
j ,

[Ĥ, P̂ ] = 0. (3)

Express P̂ in terms of the Jordan-Wigner fermions introduced in (1.a).

(1.c) Express the Hamiltonian ĤOBC assuming open boundary conditions in terms of the new
fermionic operators ĉj, assuming general parameters ∆ and B.

(1.d) Because [Ĥ, P̂ ] = 0, as shown in (1.b), the Hilbertspace H can be decomposed into a direct
sum of two subspaces H± of even (P = +1) and odd (P = −1) parity, H = H+ ⊕H−.
Treat these two cases separately and express the spin-spin interactions ĤB between sites
j = L and j = 1, i.e. across the boundary, in terms of Jordan Wigner fermions.

Hint: In one case you obtain periodic (ĉL+1 = ĉ1), in the other case anti-periodic (ĉL+1 = −ĉ1)
boundary conditions!

(1.e) Show that the Hamiltonian with periodic boundary conditions, Ĥ = ĤOBC + ĤB, can be
written as:

Ĥ =
1 + P

2
Ĥap

F +
1− P

2
Ĥper

F , (4)

where Ĥper
F (Ĥap

F ) denote the fermionic Hamiltonians with periodic (anti-periodic) boundary
conditions.

1If you would like to present your solution(s), feel free to send them to Felix Palm until Fri, June 10.
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(1.f) Diagonalize the fermionic Hamiltonians ĤF by working in Fourier modes and using a Bogoli-
ubov transformation. Show that its spectrum takes the form

ωk = 2
√

(B + cos k)2 + ∆2 sin2 k, (5)

and derive which discrete momentum values kn the fermions may occupy if the obey periodic
(anti-periodic) boundary conditions, respectively.

Problem 2 The Cooper pair wavefunction

In this problem we derive Cooper’s expression for the binding energy of a single Cooper pair.
Consider the following Hamiltonian,

Ĥ =
∑
k,σ

εk ĉ
†
k,σ ĉk,σ + Ĥint (6)

as discussed in the lecture.

(2.a) Start from a Fermi-sea |FS〉 and make Cooper’s ansatz for a state with two more electrons,

|Ψ〉 = Λ̂†|FS〉 Λ̂† =
∑
k

φk ĉ
†
k,↓ĉ

†
−k,↓. (7)

Show that (kF is the Fermi momentum):

|Ψ〉 =
∑
|k|>kF

φk |kP 〉, with |kP 〉 = ĉ†k,↓ĉ
†
−k,↓ |FS〉. (8)

In the following exercises we will assume that the Fermi energy εF = ε(kF ) = 0.

(2.b) Assume that |Ψ〉 is an eigenstate of Ĥ, i.e. Ĥ|Ψ〉 = E|Ψ〉. By comparing components of
this vector equation on both sides, show that

Eφk = 2εk φk +
∑
|k′|>kF

〈kP |Ĥint|k′P 〉 φk′ (9)

(2.c) Simplify the interaction by making Cooper’s seminal ansatz,

Vk,k′ ≡ 〈kP |Ĥint|k′P 〉 =

{
−g0/V |εk|, |εk′| < ωD

0 else
(10)

Here ωD describes a narrow energy shell and V = Ld denotes the system’s volume. Using
this simplified interaction, show that Eq. (9) becomes:

φk = − g0/V

E − 2εk

∑
0<εk′<ωD

φk′ . (11)

(2.d) From Eq. (11) derive a self-consistency equation for the energy E of the Cooper pair! Take
the continuum limit by replacing 1

V

∑
0<εk

→ N(0)
´ ωD

0
dε, where N(0) is the density of

states per spin per unit volume at the Fermi energy, and show that:

1 = g0N(0)

ˆ ωD

0

dε
1

2ε− E
(12)

(2.e) Solve Eq. (12) for E, by assuming 2ωD − E ≈ 2ωD. Show that:

E = −2ωD e
− 2

g0N(0) . (13)
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