

FAKULTÄT FÜR PHYSIK IM SoSe 2022
TMP - TA3: Condensed Matter Many-Body-Physics and Field Theory I
Dozent: Prof. Dr. Fabian Grusdt
Übungen: Felix Palm, Henning Schlömer

https://www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_22/TMP-TA3/index.html

Sheet 4:

Hand-out: Friday, May 20, 20221

Problem 1 Symmetries of the Hubbard models
In this problem we prove several symmetries of the 'plain-vanilla' Bose and Fermi-Hubbard models on a square lattice introduced in the lecture.
(1.a) Find explicit expressions for the unitary operators \hat{U}, in terms of fermionic operators $\hat{c}_{\boldsymbol{j}, \sigma}^{(\dagger)}$ corresponding to the following symmetries $\hat{U}^{\dagger} \hat{\mathcal{H}}_{\mathrm{FH}} \hat{U}=\hat{\mathcal{H}}_{\mathrm{FH}}$ of the Fermi-Hubbard model $\hat{\mathcal{H}}_{\mathrm{FH}}$: (i) global charge conservation; (ii) global \hat{S}^{z} conservation.
(1.b) From your results in (1.a), specify the corresponding symmetry groups and derive the resulting conserved quantities.
(1.c) Extend your results from (1.a) and (1.b) to the total particle-number conservation in the case of the Bose-Hubbard model.
(1.d) Find a similar unitary transformation \hat{U} which describes lattice translational symmetry in the Bose / Fermi Hubbard model, and derive the corresponding conserved quantity.

Problem 2 Correlation functions of non-interacting fermions

In this problem we discuss the Fermi-Hubbard model in the non-interacting limit $U=0$. We work in the Heisenberg picture, where operators are time dependent:

$$
\begin{equation*}
\hat{A}(t)=e^{i \hat{\mathcal{H}} t} \hat{A} e^{-i \hat{\mathcal{H}} t}, \quad \hat{A} \equiv \hat{A}(0) ; \tag{1}
\end{equation*}
$$

here $\hat{\mathcal{H}}$ is the system Hamiltonian - in this exercise $\hat{\mathcal{H}}=\hat{\mathcal{H}}_{\mathrm{FH}}(U=0)$ - and t denotes time.
(2.a) Calculate $\hat{c}(t)$ and $\hat{c}^{\dagger}(t)$ in the Heisenberg picture. Start by diagonalizing the free hopping Hamiltonian using Fourier modes.
(2.b) The free-fermion propagator in real space is defined as

$$
\begin{equation*}
\mathcal{G}_{\sigma \sigma^{\prime}}\left(\boldsymbol{r}, t ; \boldsymbol{r}^{\prime}, t^{\prime}\right)=-i\langle\mathrm{FS}| \mathcal{T} \hat{c}_{\sigma}(\boldsymbol{r}, t) \hat{c}_{\sigma^{\prime}}^{\dagger}\left(\boldsymbol{r}^{\prime}, t^{\prime}\right)|\mathrm{FS}\rangle, \tag{2}
\end{equation*}
$$

where we denote by $|\mathrm{FS}\rangle$ the non-interacting ground state (Fermi-sea) at a given filling with fermions, and we introduced the time-ordering operator:

$$
\begin{equation*}
\mathcal{T} \hat{A}(t) \hat{B}\left(t^{\prime}\right)=\hat{A}(t) \hat{B}\left(t^{\prime}\right) \theta\left(t-t^{\prime}\right) \pm \hat{B}\left(t^{\prime}\right) \hat{A}(t) \theta\left(t^{\prime}-t\right) \tag{3}
\end{equation*}
$$

[^0]with $\theta(\tau)$ the step function and \pm signs referring to bosons $(+)$ and fermions (-) respectively. Show that for a system invariant under spatial and temporal translations this propagator can be written as
\[

$$
\begin{equation*}
\mathcal{G}_{\sigma \sigma^{\prime}}\left(\boldsymbol{r}, t ; \boldsymbol{r}^{\prime}, t^{\prime}\right)=\int \frac{d^{d} k}{(2 \pi)^{d}} \int \frac{d \omega}{2 \pi} e^{i\left[\boldsymbol{k} \cdot\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)-\omega\left(t-t^{\prime}\right)\right]} \mathcal{G}_{\sigma \sigma^{\prime}}(\boldsymbol{k}, \omega) . \tag{4}
\end{equation*}
$$

\]

Furthermore, find the explicit form of the propagtor $\mathcal{G}_{\sigma \sigma^{\prime}}(\boldsymbol{k}, \omega)$ in momentum and frequency space.
(2.c) Calculate the density-density correlation function

$$
\begin{equation*}
K\left(\boldsymbol{r}, t ; \boldsymbol{r}^{\prime}, t^{\prime}\right)=\langle\mathrm{FS}| \mathcal{T} \hat{n}(\boldsymbol{r}, t) \hat{n}\left(\boldsymbol{r}^{\prime}, t^{\prime}\right)|\mathrm{FS}\rangle, \tag{5}
\end{equation*}
$$

with the normal-ordered density operator

$$
\begin{equation*}
\hat{n}(\boldsymbol{r}, t)=\sum_{\sigma} \hat{c}_{\sigma}^{\dagger}(\boldsymbol{r}, t) \hat{c}_{\sigma}(\boldsymbol{r}, t)-\rho \tag{6}
\end{equation*}
$$

and the average density per site ρ.

Problem 3 Mean-field theory of the Bose-Hubbard model

Here we study a simple mean-field description of the ground state in the Bose-Hubbard model, described by the Hamiltonian $\left(\hat{n}_{\boldsymbol{j}}=\hat{a}_{\boldsymbol{j}}^{\dagger} \hat{a}_{\boldsymbol{j}}\right)$

$$
\begin{equation*}
\hat{\mathcal{H}}_{\mathrm{BH}}=-t \sum_{\langle i, j\rangle}\left(\hat{a}_{j}^{\dagger} \hat{a}_{\boldsymbol{i}}+\text { h.c. }\right)+\frac{U}{2} \sum_{j} \hat{n}_{\boldsymbol{j}}\left(\hat{n}_{\boldsymbol{j}}-1\right)+\mu \sum_{\boldsymbol{j}} \hat{n}_{\boldsymbol{j}} . \tag{7}
\end{equation*}
$$

Here μ is a chemical potential which controls the density $\left\langle\hat{n}_{\boldsymbol{j}}\right\rangle$ in the ground state. Consider a general lattice with a one-site unit-cell and coordination number z (i.e. the number of nearest-neighbor sites is z everywhere).
(3.a) Expand the hopping part of the Bose-Hubbard Hamiltonian around a mean-field $\left\langle\hat{a}_{\boldsymbol{j}}\right\rangle=\Psi / z$ with a \mathbb{C}-valued order parameter Ψ, by writing

$$
\begin{equation*}
\hat{a}_{\boldsymbol{j}}=\underbrace{\hat{a}_{\boldsymbol{j}}-\left\langle\hat{a}_{\boldsymbol{j}}\right\rangle}_{\delta \hat{a}_{\boldsymbol{j}}}+\left\langle\hat{a}_{\boldsymbol{j}}\right\rangle \equiv \delta \hat{a}_{\boldsymbol{j}}+\Psi / z, \tag{8}
\end{equation*}
$$

and dropping all terms of order $(\delta \hat{a})^{2}$.
(3.b) Replace the hopping part of the Bose-Hubbard Hamiltonian by its mean-field expression from (3.a) to derive the mean-field Hamiltonian:

$$
\begin{equation*}
\hat{\mathcal{H}}_{\mathrm{BH}} \approx \hat{\mathcal{H}}_{\mathrm{MF}}=\sum_{\boldsymbol{j}}\left[\frac{U}{2} \hat{n}_{\boldsymbol{j}}\left(\hat{n}_{\boldsymbol{j}}-1\right)+\mu \hat{n}_{\boldsymbol{j}}-t\left(\Psi \hat{a}_{\boldsymbol{j}}^{\dagger}+\text { h.c. }\right)\right] \tag{9}
\end{equation*}
$$

(3.c) The mean-field Hamiltonian takes the general form

$$
\begin{equation*}
\hat{\mathcal{H}}_{\mathrm{MF}}=\sum_{j} \hat{\mathcal{H}}_{j}^{0} \tag{10}
\end{equation*}
$$

where each $\hat{\mathcal{H}}_{\boldsymbol{j}}^{0}$ acts only on the local particle-number Hilbertspace on site \boldsymbol{j}. Assuming a fixed given $\Psi \in \mathbb{C}$, one can numerically find the ground state $\left|\psi_{0}(\Psi)\right\rangle$ of $\hat{\mathcal{H}}_{j}^{0}$. Then the overall ground state of the mean-field Hamiltonian is determined by the condition that (why?)

$$
\begin{equation*}
\left\langle\psi_{0}(\Psi)\right| \hat{\mathcal{H}}_{\boldsymbol{j}}^{0}(\Psi)\left|\psi_{0}(\Psi)\right\rangle=\min . \tag{11}
\end{equation*}
$$

Derive a formal equation for Ψ minimizing this energy.

[^0]: ${ }^{1}$ If you would like to present your solution(s), feel free to send them to Felix Palm until Fri, May 27.

