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Problem 1 Bogoliubov theory of the Bose-Hubbard model

In this problem, we extend the Bogoliubov theory of weakly interacting bosons to a BEC in a lattice
model. You can follow closely the continuum calculation from the lecture. Specifically, consider the
Bose-Hubbard Hamiltonian in 3D,

Ĥ = −t
∑
〈i,j〉

(
â†iâj + h.c.

)
+
U

2

∑
j

(â†j âj − 1)â†j âj , (1)

where [âi, â
†
j ] = δi,j are bosonic operators.

(1.a) Determine the normal-ordered Hamiltonian : Ĥ : and show that : Ĥ := Ĥ. Explain the
physical meaning of the different terms in the Hamiltonian.

(1.b) Introduce discrete momentum modes, associated with second quantized bosonic operators âk,
and make a variational ansatz which describes a macroscopic occupation of the k = 0 mode.

(1.c) Derive the effective Hamiltonian, quadratic in âk 6=0, describing low-energy collective excitati-
ons.

(1.d) Diagonalize the effective Hamiltonian from (1.c) and derive the Bogoliubov dispersion relation
in a lattice.

Problem 2 Classical field theory

In this problem we discuss classical field theories and their formulation using Lagrangian densities.
Later in the lecture we focus on quantum field theories, but it is often useful to relate them (in
some limits) to simpler classical theories.

A classical field φn(r, t) with components n is described with a general action of the form:

S =

ˆ
dt

ˆ
ddr L[φn, ∂µφn], (2)

where µ = t, x, y, z, .. and L[φn, ∂µφn] is the Lagrangian density. By minimizing the action, δS = 0,
one obtains the Euler-Lagrange equations of motion:∑

µ

∂

∂xµ

∂L[φn, ∂µφn]

∂(∂µφn)
− ∂L[φn, ∂µφn]

∂φn
= 0 ∀n. (3)

1If you would like to present your solution(s), feel free to send them to Henning Schlömer until Fri, May 20.

1

https://www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_22/TMP-TA3/index.html


(2.a) Consider the classical φ4 theory of a real, scalar, non-relativistic field φ ∈ R described by the
action

L[φ, ∂µφ] =
1

2

∑
µ

(∂µφ)2 − m2

2
φ2 − αφ4, (4)

and derive the corresponding equations of motion for φ(r, t).

(2.b) Consider the classical φ4 theory of a complex, scalar, non-relativistic field φ ∈ C described
by the action

L[φ, φ∗, ∂µφ, ∂µφ
∗] =

1

2

∑
µ

|∂µφ|2 −
m2

2
|φ|2 − α|φ|4, (5)

and derive the corresponding equations of motion for φ(r, t) and φ∗(r, t). You may treat φ
and φ∗ as two independent components!

Problem 3 The Gross-Pitaevskii equation

In this problem we study weakly interacting bosons with point-like interactions of strength g in an
external trapping potential V (x). With m and µ we denote the boson mass and chemical potential,
respectively. This system is described by the Hamiltonian (~ = 1):

Ĥ =

ˆ
d3r

{
1

2m
|∇ψ̂(r)|2+(V (r)− µ) ψ̂†(r)ψ̂(r)

}
+
g

2

ˆ
d3rd3r′ ψ̂†(r)ψ̂†(r′)δ(r−r′)ψ̂(r′)ψ̂(r)

(6)

(3.a) Using the canonical commutation relations of the bosonic field ψ̂(r), derive the equations of
motion of the field operators ψ̂(r, t) in the Heisenberg picture:

i
∂

∂t
ψ̂(r, t) =

[
ψ̂(r, t), Ĥ

]
= ... (7)

You obtain the operator-valued Gross-Pitaevskii equation.

(3.b) To derive a simpler C-valued classical equation providing an approximate description of the
interacting Bose-gas, consider the following variational wavefunction:

|ψ(t)〉 =
1√
N !

(ˆ
d3r Ψ(r, t)ψ̂†(r)

)N
|0〉. (8)

Here N is the total boson number and Ψ(r, t) is a variational parameter depending on space
and time. Describe the physical meaning of this state!

(3.c) For the variational ansatz in (3.b), derive the following expectation value,

L[∂tΨ,∇Ψ,Ψ] = 〈ψ(t)| − i∂t + Ĥ |ψ(t)〉 (9)

which takes the role of a classical Lagrangian density.

(3.d) Derive the Euler-Lagrange equations for Ψ(r, t) from the Lagrangian density L derived in
(3.c). Show that the obtained equation takes the form:

i∂tΨ(r, t) = − 1

2m
∇2Ψ(r, t) + (V (r)− µ) Ψ(r, t) + g|Ψ(r, t)|2Ψ(r, t). (10)

Compare this Gross-Pitaevskii equation to the operator-valued equation of motion obtained
in (3.a)!

Hint: You may treat space as discretize to conceptually simplify your calculations.
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