
Fakultät für Physik im SoSe 2022

TMP - TA3: Condensed Matter Many-Body-Physics

and Field Theory I

Dozent: Prof. Dr. Fabian Grusdt
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Problem 1 Yastrow variational states and Laughlin wavefunctions

A popular family of variational wavefunctions is defined by the Yastrow wavefunctions, which take
the form:

Ψ(z1, ..., zN) =
∏
i<j

φ2(zi − zj) ×
N∏
j=1

φ1(zj), (1)

where zj are general (possibly vector-valued) coordinates, i, j = 1...N and φ1(z) and φ2(z) are
arbitrary single-particle and pair-wavefunctions.

(1.a) For normalized many-body wavefunctions |Ψ〉, show that the density expectation value is

n(x) = 〈Ψ|Ψ̂†(x)Ψ̂(x)|Ψ〉 = N

ˆ
dz2...dzN |Ψ(x, z2, ..., zN)|2, (2)

and the two-point correlation function is

g(2)(x1, x2) = 〈Ψ|Ψ̂†(x1)Ψ̂(x1)Ψ̂
†(x2)Ψ̂(x2)|Ψ〉

= N(N − 1)

ˆ
dz3...dzN |Ψ(x1, x2, z3, ..., zN)|2.

(3)

(1.b) Use the results from (3.a) to show for the Yastrow ansatz that

n(x) ∝ |φ1(x)|2 (4)

and
g(2)(x1, x2) ∝ |φ2(x1 − x2)|2|φ1(x1)|2|φ1(x2)|2. (5)

(You do not have to evaluate the integrals explicitly, just state them!)

(1.c) A case of particular relevance corresponds to 2D spin-polarized fermions in a magnetic field,
where zj = xj + iyj are complex variables describing their coordinates xj , yj in the 2D plane.
The low-energy single-particle orbitals in this problem are labeled by m = 0, 1, 2, 3, ... and
(up to normalization) given by

ψm(z) = zme−|z|
2/4. (6)

Calculate the fermionic Slater determinant state obtained when all states m = 0, ..., N are
filled with one fermion and show that, up to normalization, it takes the form

ΨF(z1, ..., zN) =
∏
i<j

(zi − zj) exp

[
−

N∑
j=1

|zj|2/4

]
. (7)

This wavefunction has the Yastrow form; it’s the so-called Vandermonde determinant.

1If you would like to present your solution(s), feel free to send them to Felix Palm until Fri, May 13.
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(1.d) Construct a bosonic Yastrow-type wavefunction ΨB(z1, ..., zN) with φ1(z) = exp(−|z|2/4)
and according to the following rules: (i) φ2(z) is a polynomial of only z (not the complex
conjugate z∗); (ii) the state ΨB(z1, ..., zN ) must have zero energy when point-like interactions

Ĥint =
1

2

∑
i 6=j

gδ(zi − zj) (8)

are considered (you can use results from 3.b here); (iii) among all Yastrow wavefunctions
satisfying (i) and (ii), find the one with minimal powers of zn.

The result you obtain here is the famous Laughlin wavefunction.

Problem 2 Solving problems in second quantization formalism

In this problem we study a non-interacting hopping problem using the formalism of second
quantization. Consider a bosonic or fermionic field ψ̂j defined on lattice sites j ∈ Z on an infinite
one-dimensional chain. The Hamiltonian of the system is:

Ĥ = −
∑
j

(
t1 ψ̂

†
j+1ψ̂j + t2 ψ̂

†
j+2ψ̂j + h.c.

)
. (9)

(2.a) Define the Fourier-transformed field ψ̂(k) in momentum space and derive it’s (anti-) commu-
tation relations for (fermionic) bosonic fields ψ̂j. On which interval is k defined?

(2.b) Express ψ̂j in terms of the new field ψ̂(k) and insert this result into the Hamiltonian. Show
that the Hamiltonian simplifies and becomes an integral over uncoupled momentum modes.

(2.c) Describe the eigenstates of the Hamiltonian using your result in (2.b).

Problem 3 Second quantization

In this problem we study more examples of the second quantization formalism.

(3.a) Consider bosonic (fermionic) fields ψ̂m describing single-particle orbitals |ψm〉 labeled by m,
and obeying the canonical (anti-) commutation relations

[ψ̂n, ψ̂
†
m] = δm,n,

(
{ψ̂n, ψ̂

†
m} = δm,n

)
. (10)

Consider a unitary transformation U of the single-particle orbitals |ψm〉, transforming them
to a new single-particle basis |φm〉 = U |ψm〉 =

∑
n Un,m|ψn〉, with

∑
n U
∗
m′,nUn,m = δm′,m,

i.e. U †U = 1. Show that the new 2nd-quantized field operators

φ̂†m =
∑
n

Un,mψ̂
†
n (11)

satisfy the same canonical (anti-) commutation relations

[φ̂n, φ̂
†
m] = δm,n,

(
{φ̂n, φ̂

†
m} = δm,n

)
. (12)
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(3.b) Consider a point-like three-particle interaction, taking the first-quantized form

Ĥ =
g3
6

∑
i 6=j 6=k 6=i

δ(r̂i − r̂j)δ(r̂j − r̂k), (13)

and construct the corresponding Hamiltonian in second quantization.

(3.c) In the lecture we constructed the 2nd quantized interaction operator

Û =

ˆ
ddr ddr′ ψ̂†(r)ψ̂†(r′)

1

2
U(r − r′) ψ̂(r′)ψ̂(r) (14)

corresponding to the 1st quantized interaction potential U(r) between two particles at
distance r. Show by an explicit calculation that the action of Û on the many-body state
|r1, ..., rN〉 is:

Û |r1, ..., rN〉 =

(
1

2

∑
i 6=j

U(ri − rj)

)
|r1, ..., rN〉. (15)

(3.d) Write the interaction Û from Eq. (14) in terms of 2nd quantized momentum operators ψ̂†k.
To simplify the final expression, express U(r) in terms of its Fourier transform Ũ(q).
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