
[Tutorial T11b] QSpace: NRG: Iterative diagonalization and energy
flow
Author: QSpace version written by Andreas Gleis

Numerical renormalization group (NRG) is a method for solving quantum impurity systems. Kenneth G. Wilson

has itnvented NRG to solve the Kondo problem which was not solvable then. The invention of NRG, indeed, is

a part of his Nobel prize citation. NRG is an ancestor of all numerical methods having "renormalization group" in

their names.

We have already covered the iterative diagonalization and the Lanczos tridiagonaliation earlier, in T04a and

T07a, respectively. So one can recycle the solutions of those earlier tutorials to solve the exercises for this

tutorial.

Logarithmic discretization of bath
The starting point of the methods we covered before, such as DMRG and iTEBD, is the Hamiltonian of a system

which is already discrete, such as chain. On the other hand, an NRG calculation starts from discretizing the

continuous system.

Here we consider an example of quantum impurity system, where the impurity is a spinful fermionic level and

the bath consists of non-interacting spinful fermions. The Hamiltonian is given by

where  is spin,  is the energy of bath fermion of momentum k, and  is the coupling amplitude between

the impurity level (to which a particle of spin s is added by applying ) and the bath level of momentum k. The

coupling between the impurity and the bath is characterized by the hybridization function,

In this demonstration, we choose the Anderson impurity and the "box-shaped" hybridization function,

where  is a number operator at the impurity, U is the local Coulomb interaction,  is the impurity

energy level,  is hybridzation strength, and D is the half-bandwidth of the bath. This case is called single-
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impurity Anderson model (SIAM). Throughout this tutorial, we set  as an energy unit, without loss of

generality. 

The "box-shaped" hybridization function would look like:

To discretize this, we consider a logarithmic discretization parameter . The logarithmic frequency grid

 splits the whole bandwidth  into the intervals  that are defined by  and

.

The part of the bath on each interval  is replaced by a discrete level at  that is coupled to the

impurity with amplitude .

The discretized Hamiltonian is written by

Each discretized bath level (to which a particle of spin s is added by applying ) represents the part of the

bath on an interval . Therefore the coupling strength of the level should be the same as the integrated

hybridazation strength over the inteval,
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While the coupling amplitude  is unambigously determined, there are several different ways to determine the

discretized level position . Here we use the Campo–Oliveira scheme [V. L. Campo and L. N. Oliveira, Phys.

Rev. B 72, 104432 (2005)], which defines the level position  as

(This way of determining  is better than Wilson's original way. There is a more advanced scheme, but it is

harder to implement. That's why we use the Campo–Oliveira scheme here.)

The discretized Hamiltonian  is so-called star-geometry Hamiltonian. The impurity level and

the discretized bath levels (as vertices of a graph), which are coupled via hopping (as edges of the graph), can

be depicted as a star graph.

Lanczos tridiagonalization
The star-geometry Hamiltonian is  is mapped onto the Wilson chain Hamiltonian, via the

Lanczos tridiagonalization. The Lanczos method (which is implemented, for example, in DMRG/eigs_1site.m

in the context of DMRG) first constructs a tridiagonal matrix representation of the input matrix constrained

within the Krylov space, and then diagonalizes the tridiagonal matrix to obtain the ground state. The Lanczos

tridiagonalization indicates the first part of this process. Here in the mapping onto the Wilson chain, we

consider the tridiagonal matrix representation of the quadratic (i.e., single-particle) terms of the bath and the

hybridization, without the quartic (i.e., interacting) impurity Hamiltonian.

The Wilson chain Hamiltonian for the SIAM is given by

Note that the impurity Hamiltonian  is not changed along the logarithmic discretization and the

tridiagonalizatoin. The Wilson chain is in principle semi-infinite, but in practice we consider a large but finite

length. The length N sets in the minimum energy scale  to consider.

We will solve this one-dimensional system with the iterative diagonalization.
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Exercise 1: Complete doCLD_Ex.m for the logarithmic discretization and the
Lanczos tridiagonalization
Complete the function doCLD_Ex.m included in the same .zip file with this document. Its subfunction

doCLD_1side performs the logarithmic discretization. Complete the part which are enclosed by the
comments TODO - Exercise 1, within the main function for the Lanczos tridiagonalization.

Once you solve Exercise 1, you can run this demonstration for verifying your impelementation.

clear

Gamma = 8e-5*pi; % hybridization strength

% NRG parameters
Lambda = 2.5; % discretization parameter
N = 55; % length of the Wilson chain

[ff,gg] = doCLD([-1 1],[1 1]*Gamma/pi,Lambda,N);

Since MATLAB indexes the array from 1, we need to shift the indices: ff(1) corresponds to  and ff(n) for

 corresponds to .

The hopping amplitudes ff decay exponentianlly, while the on-site energies gg are zeros up do double

precision. To see this, we rescale the values with factors . [Quick exercise: Why , not ? We started

from the discretization grid of , so it might look weird to have factor 1/2 in the exponent; but of course,

there is a good reason.]

figure;
plot([ff gg].*(Lambda.^((1:numel(ff)).'/2)), ...
    'LineWidth',1);
set(gca,'FontSize',13,'LineWidth',1);
grid on;
xlabel('Index n');
legend({'ff(n) \times \Lambda^{n/2}', ...
    'gg(n) \times \Lambda^{n/2}'}, ...
    'Location','eastoutside');
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The first elements of ff deviate from the exponential dependence, as we see the deviation from the horizontal

line. They come from the specific details of the hybridization function. For example, the square of ff(1) is

equivalent to the integral of the hybridization,

ff(1)^2 - 2*Gamma/pi % D = 1 as energy unit

ans = -4.6892e-18

Exercise 2: Complete NRG_IterDiagQS_Ex.m for the iterative
diagonalization a la NRG
Complete the function NRG_IterDiagQS_Ex.m included in the same .zip file with this document. This

NRG style of the iterative diagonalization differs from the iterative diagonalization covered in earlier tutorial

T04a in that (i) the Hamiltonian is rescaled by the energy scale factors  and (ii) the energy eigenvalues

are shifted so that the lowest energy eigenvalue becomes zero. Other than these, it is the same iterative

diagonalization. Complete the part which are enclosed by the comments TODO - Exercise 2.
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As a demonstration of the completed iterative diagonalization, we apply it to the SIAM.

% Hamiltonian parameters
U = 4e-3; % Coulomb interaction at the impurity
epsd = -U/2; % impurity on-site energy

% NRG parameter
Nkeep = 300;

% symmetries
symstr = 'Acharge,SU2spin'; % U(1) charge and SU(2) spin
% symstr = 'Acharge,Aspin'; % U(1) charge and U(1) spin

% Construct local operators
[F,Z,S,I] = getLocalSpace('FermionS',symstr,'NC',1);
[F,Z,S,EF] = setItag('s00','op',F,Z,S,I.E);

% particle number operator
NF = QSpace;
for itF = 1:numel(F)
    NF(itF) = contract(F(itF),'!2*',F(itF));
end
       
% Impurity Hamiltonian
H0 = U/2*sum(NF)*(sum(NF)-1) + epsd*sum(NF) + 1e-33*EF;

% ket tensor for the impurity
A0 = getIdentity(setItag('L00',getvac(EF,1)),1,EF,1,'K00',[1,3,2]);

H0 = contract(A0,'!2*',{A0,H0});

% same hopping amplitude and on-site energies for all flavors
ff = repmat(ff,[1,numel(F)]);
gg = repmat(gg,[1,numel(F)]);

% iterative diagonalization
Inrg = NRG_IterDiagQS(H0,A0,Lambda,ff,F,gg,NF,Z,Nkeep);

21-06-10 13:56:56 | NRG: start
21-06-10 13:56:56 | #00/55 : NK=3/3, EK=1e-33/1e-33
21-06-10 13:56:56 | #01/55 : NK=10/10, EK=0.04894/0.04894
21-06-10 13:56:56 | #02/55 : NK=35/35, EK=3.209/3.209
21-06-10 13:56:56 | #03/55 : NK=126/126, EK=6.225/6.225
21-06-10 13:56:56 | #04/55 : NK=310/462, EK=7.499/13.02
21-06-10 13:56:56 | #05/55 : NK=310/1154, EK=7.033/13.08
21-06-10 13:56:56 | #06/55 : NK=318/1150, EK=7.243/13.62
21-06-10 13:56:57 | #07/55 : NK=310/1178, EK=7.047/13.09
21-06-10 13:56:57 | #08/55 : NK=318/1150, EK=7.248/13.61
21-06-10 13:56:57 | #09/55 : NK=310/1178, EK=7.073/13.13
21-06-10 13:56:57 | #10/55 : NK=318/1150, EK=7.274/13.59
21-06-10 13:56:57 | #11/55 : NK=310/1178, EK=7.117/13.19
21-06-10 13:56:57 | #12/55 : NK=318/1150, EK=7.359/13.59
21-06-10 13:56:57 | #13/55 : NK=310/1178, EK=7.207/13.33
21-06-10 13:56:57 | #14/55 : NK=322/1150, EK=7.688/13.9
21-06-10 13:56:57 | #15/55 : NK=312/1192, EK=7.46/13.82
21-06-10 13:56:57 | #16/55 : NK=327/1166, EK=8.385/14.7

6



21-06-10 13:56:58 | #17/55 : NK=304/1218, EK=8.45/14.98
21-06-10 13:56:58 | #18/55 : NK=307/1136, EK=9.027/16.05
21-06-10 13:56:58 | #19/55 : NK=312/1148, EK=9.33/16.02
21-06-10 13:56:58 | #20/55 : NK=311/1170, EK=9.719/17.5
21-06-10 13:56:58 | #21/55 : NK=327/1174, EK=9.804/17.18
21-06-10 13:56:58 | #22/55 : NK=311/1231, EK=9.781/18.26
21-06-10 13:56:58 | #23/55 : NK=302/1174, EK=9.751/17.32
21-06-10 13:56:58 | #24/55 : NK=311/1134, EK=9.836/17.88
21-06-10 13:56:58 | #25/55 : NK=322/1174, EK=9.979/17.46
21-06-10 13:56:59 | #26/55 : NK=311/1210, EK=9.916/18.36
21-06-10 13:56:59 | #27/55 : NK=322/1174, EK=10.13/17.64
21-06-10 13:56:59 | #28/55 : NK=325/1210, EK=10.18/18.32
21-06-10 13:56:59 | #29/55 : NK=322/1224, EK=10.34/18.23
21-06-10 13:56:59 | #30/55 : NK=315/1210, EK=10.19/18.35
21-06-10 13:56:59 | #31/55 : NK=322/1184, EK=10.65/18.36
21-06-10 13:56:59 | #32/55 : NK=303/1210, EK=10.33/18.76
21-06-10 13:56:59 | #33/55 : NK=300/1136, EK=10.79/18.81
21-06-10 13:56:59 | #34/55 : NK=318/1122, EK=10.94/18.84
21-06-10 13:56:59 | #35/55 : NK=300/1190, EK=11.33/19.89
21-06-10 13:57:00 | #36/55 : NK=301/1119, EK=11.16/19.39
21-06-10 13:57:00 | #37/55 : NK=316/1118, EK=11.94/20.4
21-06-10 13:57:00 | #38/55 : NK=306/1175, EK=11.61/20.4
21-06-10 13:57:00 | #39/55 : NK=310/1136, EK=12.08/21.49
21-06-10 13:57:00 | #40/55 : NK=306/1151, EK=11.76/20.7
21-06-10 13:57:00 | #41/55 : NK=307/1136, EK=11.97/21.78
21-06-10 13:57:00 | #42/55 : NK=306/1139, EK=11.82/20.14
21-06-10 13:57:00 | #43/55 : NK=309/1136, EK=12.2/21.9
21-06-10 13:57:00 | #44/55 : NK=306/1147, EK=11.85/20.88
21-06-10 13:57:00 | #45/55 : NK=309/1136, EK=12.21/21.95
21-06-10 13:57:01 | #46/55 : NK=306/1147, EK=11.86/20.9
21-06-10 13:57:01 | #47/55 : NK=309/1136, EK=12.22/21.97
21-06-10 13:57:01 | #48/55 : NK=306/1147, EK=11.86/20.91
21-06-10 13:57:01 | #49/55 : NK=309/1136, EK=12.22/21.98
21-06-10 13:57:01 | #50/55 : NK=306/1147, EK=11.86/20.91
21-06-10 13:57:01 | #51/55 : NK=309/1136, EK=12.22/21.98
21-06-10 13:57:01 | #52/55 : NK=306/1147, EK=11.86/20.91
21-06-10 13:57:01 | #53/55 : NK=309/1136, EK=12.22/21.98
21-06-10 13:57:01 | #54/55 : NK=306/1147, EK=11.86/20.91
21-06-10 13:57:02 | #55/55 : NK=0/1136, EK=0/21.98
21-06-10 13:57:02 | Memory usage : 1.96GiB
Elapsed time: 5.533s, CPU time: 12.34s, Avg # of cores: 2.23

Here each line indicates the information of each iteration step: time stamp, number of the kept states, number of

the total states, the largest energy of the kept states, the largest energy of the discarded states.

Energy flow diagam
NRG provides a method to analyze the spectrum obtained along the iterative diagonalization. Let's plot the

lowest-lying (many-body) energy levels. We plot the results from even iterations and those from odd iterations

separately. The plotting is handled by the function plotEQS.m. Please have a look at the code to get an idea

how the data from the iterative diagonalization is prepared to finally plot the flow diagram.

plotEQS(Inrg);
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These plots are called energy flow diagram or finite-size energy spectra. The name "flow" literally comes

from that the lines flow from one regime to the other. There are three regions (iterations 1--10; 17--25; 35--55)

connected via two crossovers. These regions correspond to different fixed points: free orbital, local moment,
and strong coupling. The strong-coupling fixed-point regime exhibits prominent plateau of the energy levels.

Exercise 3: Reproduce lowest-lying energies in the strong-coupling regime
by fixed-point Hamiltonians
Let's consider iteration 54 in the strong-coupling fixed-point regime.. Their lowest-lying energies, including all

degenerate levels, are:

E = eigQS(diag(Inrg.HK{54}));
EKodd = [];
if size(E,2) > 1
    for itE = 1:size(E,1)
        EKodd = [EKodd;repmat(E(itE,1),[E(itE,2),1])];
    end
else
    EKodd = E;
end
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fprintf([sprintf('%.4f, ',EKodd(1:5).'),'\n', ...
    sprintf('%.4f, ',EKodd(6:11).'),'...\n']);

0.0000, 0.7471, 0.7471, 0.7471, 0.7471, 
1.4941, 1.4941, 1.4941, 1.4941, 1.4941, 1.4941, ...

We see 1-fold, 4-fold, and 6-fold degeneracies. On the other hand, the energy levels at the next iteration 55

have more degeneracies:

E = eigQS(diag(Inrg.HK{55}));
EKeven = [];
if size(E,2) > 1
    for itE = 1:size(E,1)
        EKeven = [EKeven;repmat(E(itE,1),[E(itE,2),1])];
    end
else
    EKeven = E;
end
fprintf([sprintf('%.4f, ',EKeven(1:4).'),'\n', ...
    sprintf('%.4f, ',EKeven(5:12).'),'\n', ...
    sprintf('%.4f, ',EKeven(13:20).'),'...\n']);

0.0000, 0.0000, 0.0000, 0.0000, 
1.5213, 1.5213, 1.5213, 1.5213, 1.5213, 1.5213, 1.5213, 1.5213, 
1.5213, 1.5213, 1.5213, 1.5213, 1.5213, 1.5213, 1.5213, 1.5213, ...

There are 4-fold and 16-fold degeneracies, up to numerical noise of . Reproduce these (many-body)

energy values by considering strong-coupling fixed-point Hamiltonians.

(Hint: The fixed-point Hamiltonians are single-particle Hamiltonians, effectively!)

Exercise 4: Single-impurity Kondo model
We can derive the Wilson chain Hamiltonian  for the single-impurity Kondo model (SIKM), from the chain

Hamiltonian of the SIAM  shown above. By applying the Schrieffer-Wolff transformation to the impurity

site (on which  acts) and the first bath site (on which  acts), we obtain

Here  is the spin operator acting on the impurity site,
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is the spin operator acting on the first bath site,  is the vector of Pauli matrices, and

is the Kondo coupling strength. For particle-hole symmetric case  which we considered above, it

becomes

The bath term  is the same as in the SIAM case. Note that the impurity site in the SIKM has dimension 2,

while that in the SIAM has 4; the doubly occupied and the empty states are "integrated out" by the Schrieffer-

Wolff transformation. Refer to J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966) for the details of the

Schrieffer-Wolff transformation.

Perform the iterative diagonalization of this chain Hamiltonian for the SIKM, with the value of J

corresponding to the choice of parameters U, , and  above. (Again  is the energy unit.) Compare the

energy flow diagram with the SIAM result.

(Hint: You can do it by changing H0, A0, and ff only, with using the same function NRG_IterDiagQS!)
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