
[Tutorial T07b] QSpace: DMRG for ground-state search
Zoom session, 02.06.2020

Author: Seung-Sup Lee (this document), Jheng-Wei Li (codes)

Date: 27.05.2020

Note that this part of tutorial (T07b) is optional. Please keep in mind that, however, some of the final exam

topics would be the implementation of some tensor network methods by using the QSpace library. For those

who will work on such exam topics, this exercise will be a good practice!

Here we will study the single-site and two-site DMRG methods for ground-state search, which exploit the

symmetries in the system. For this, we use the QSpace library. Thus we distribute the materials for T07b, both

for exercise and solution, only via my exchange directory within the ASC cluster system, since the QSpace is

not public yet.

There is a new sub-directory (/home/s/S.Lee/X/QSpace_TNcourse/JhengWei.Li) under my exchange

directory. It contains the functions that are used for the one-site and two-site DMRG, written by Jheng-Wei Li

(JW). JW's implementation of DMRG for T07b differs from Seung-Sup (SS)'s for T07a, at a few points.

• JW's uses QSpace while SS's uses MATLAB only. So the former respects the symmetry in a strict sense,

which leads to more crucial difference between the one-site and two-site DMRG methods.

• JW's initializes the MPS with random numbers, while the default of SS's is to initialize with the result

of the iterative diagonalization. Of course, one can implement the initialization with the iterative

diagonalization result, for the QSpace codes.

• JW's uses the restarted Lanczos method to update the ket tensor, while SS's uses the basic Lanczos

method.

Random number stream
Here we use random MPS as initial guess. MATLAB uses the same random number stream for the same

session. So if you run the same tutorial material directly after starting the MATLAB session, you will get the

same result. To reset the random number seed with the current time, one may use the following:

RandStream.setGlobalStream( ...
    RandStream('mt19937ar','Seed','shuffle'));

Note that the MATLAB documentation for RandStream reads: "It is usually not desirable to (reset random

number seed) more than once per MATLAB session as it may affect the statistical properties of the random

numbers MATLAB produces."

One-site DMRG with QSpace
We use the one-site DMRG code (JhengWei.Li/DMRG_1site.m) to obtain the ground state of the spin-1/2

Heisenberg chain. The Hamiltonian of the model is
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We can set  without loss of generality. (Note that this model has been studied with the iterative

diagonalization in T04 and T06.)

Create the basic QSpace objects, and set the parameters for DMRG.

clear
%% Basic Operators
[ss, info]= getLocalSpace('Spin' ,1/2, '-v');

getL'>getLocal':1191 18:54:18   *  got { E } ops
getL'>getLocal':1238 18:54:18   *  1 S-op 

eid = info.E;
inv = QCREATE(eid, '1', 'IN');
vac = getvac(eid, [1]);
ss_T = QSpace(permuteQS(ss, [3,2,1], 'conj'));

%% DMRG parameters
NSITE = 16;
DKEEP = 16; 
ECONV = 1E-6;
SWEEP = 50; 

Construct the MPO Hamiltonian.

% % Build MPO
% generate a MPO of form [I 0 0] 
%                        [S 0 0]
%                        [0 S I]
%                     [3]
%                      |
% index ordering: [1] ---  [4]
%                      |
%
%                     [2]
z = realmin;
mat2 = [1, z, z;     
        1, z, z;     
        z, 1, 1;];   
LL = GetMPO(mat2(end,:), ss, ss_T, [], []);
RR = GetMPO(mat2(:,1), ss, ss_T, [], []);
CC = GetMPO(mat2, ss, ss_T, [], []);

MPO = QSpace(NSITE,1);
MPO(1) = LL;
MPO(end) = RR;
if (NSITE>2)
 for isite = 2:NSITE-1
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   MPO(isite) = CC;
 end
end

Initialize the MPS. Since the MPS consists of QSpace objects that have symmetry information, we generate the

isometries by using getIdentityQS successively. JW's QCREATE routine is a wrap-up for getIdentityQS.

% % Init MPS
% [1] --- [3]
%      |
%     [2]
MPS = QSpace(NSITE, 1);
MPS(1) = QCREATE(vac, '1', eid, '1', 'OUT');
for isite = 2 : ceil(NSITE/2)
  tmp = QCREATE(MPS(isite-1), '3', eid, '1', 'OUT');
  [MPS(isite), ~, ~] = QSVD(tmp, [1,2], -1, DKEEP);
end

./mpsortho.cc:767    18:54:18  WRN readjusting norm by factor 1.109

./mpsortho.cc:767    18:54:18  WRN readjusting norm by factor 1.472

./mpsortho.cc:767    18:54:18  WRN readjusting norm by factor 1.386

for isite = 1 : floor(NSITE/2)
  MPS(NSITE-isite+1) = contract(conj(MPS(isite)), [2], inv,[2], [2,3,1]);
end

Then replace the reduced matrix tensors, i.e., .data of the QSpace objects, with random numbers.

% Randomize
for isite = 1 : NSITE
  MPS(isite) = QRAND(MPS(isite), -1.0, 1.0);
end

Bring the MPS into left-canonical form.

[MPS, ~] = CANONICAL(MPS, [], 0, NSITE, -1, DKEEP); %% left normalize
L_eff = QCREATE(MPS(1), '1', MPO(1), '1*', 'OUT');
R_eff = conj(L_eff);

Run the DMRG sweeps to find the ground state.

[MPS, ene] = DMRG_1site(MPS, L_eff, R_eff, MPO, DKEEP, ECONV, SWEEP);

*** SWEEP:   1, R2L @  16; E =     -4.0788650433741065 >>>       0.01 sec 
*** SWEEP:   1, R2L @  15; E =     -4.7851137361480740 >>>       0.03 sec 
*** SWEEP:   1, R2L @  14; E =     -5.0036562480468278 >>>       0.08 sec 
*** SWEEP:   1, R2L @  13; E =     -5.2734774528875628 >>>       0.36 sec 
*** SWEEP:   1, R2L @  12; E =     -5.8068508635850229 >>>       1.02 sec 
*** SWEEP:   1, R2L @  11; E =     -6.7255663118731448 >>>       1.05 sec 
*** SWEEP:   1, R2L @  10; E =     -6.7439734261255202 >>>       0.82 sec 
*** SWEEP:   1, R2L @   9; E =     -6.7439734261253523 >>>       0.02 sec 
*** SWEEP:   1, R2L @   8; E =     -6.7478211421144092 >>>       0.28 sec 
*** SWEEP:   1, R2L @   7; E =     -6.7478211421143328 >>>       0.02 sec 
*** SWEEP:   1, R2L @   6; E =     -6.7498651973758124 >>>       0.73 sec 
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*** SWEEP:   1, R2L @   5; E =     -6.7498651973758088 >>>       0.03 sec 
*** SWEEP:   1, R2L @   4; E =     -6.7498651973758079 >>>       0.02 sec 
*** SWEEP:   1, R2L @   3; E =     -6.7498651973758044 >>>       0.02 sec 
*** SWEEP:   1, R2L @   2; E =     -6.7498651973758044 >>>       0.02 sec 
*** SWEEP:   1, L2R @   1; E =     -6.7498651973758044 >>>       0.01 sec 
*** SWEEP:   1, L2R @   2; E =     -6.7498651973758017 >>>       0.01 sec 
*** SWEEP:   1, L2R @   3; E =     -6.7498651973758070 >>>       0.02 sec 
*** SWEEP:   1, L2R @   4; E =     -6.7498651973758070 >>>       0.02 sec 
*** SWEEP:   1, L2R @   5; E =     -6.7498651973757999 >>>       0.02 sec 
*** SWEEP:   1, L2R @   6; E =     -6.7498651973758026 >>>       0.02 sec 
*** SWEEP:   1, L2R @   7; E =     -6.7498651973758008 >>>       0.02 sec 
*** SWEEP:   1, L2R @   8; E =     -6.7498651973758026 >>>       0.02 sec 
*** SWEEP:   1, L2R @   9; E =     -6.7498651973758026 >>>       0.02 sec 
*** SWEEP:   1, L2R @  10; E =     -6.7498651973758026 >>>       0.02 sec 
*** SWEEP:   1, L2R @  11; E =     -6.7498651973754544 >>>       0.26 sec 
*** SWEEP:   1, L2R @  12; E =     -6.7498651973758221 >>>       0.02 sec 
*** SWEEP:   1, L2R @  13; E =     -6.7498651973758212 >>>       0.02 sec 
*** SWEEP:   1, L2R @  14; E =     -6.7498651973758195 >>>       0.02 sec 
*** SWEEP:   1, L2R @  15; E =     -6.7498651973758212 >>>       0.01 sec 
*** SWEEP:   2, R2L @  16; E =     -6.7498651973758177 >>>       0.01 sec 
*** SWEEP:   2, R2L @  15; E =     -6.7498651973758221 >>>       0.01 sec 
*** SWEEP:   2, R2L @  14; E =     -6.7498651973758195 >>>       0.02 sec 
*** SWEEP:   2, R2L @  13; E =     -6.7498651973758230 >>>       0.02 sec 
*** SWEEP:   2, R2L @  12; E =     -6.7498651973758257 >>>       0.02 sec 
*** SWEEP:   2, R2L @  11; E =     -6.7498651973758266 >>>       0.02 sec 
*** SWEEP:   2, R2L @  10; E =     -6.7498651973758257 >>>       0.02 sec 
*** SWEEP:   2, R2L @   9; E =     -6.7498651973758221 >>>       0.02 sec 
*** SWEEP:   2, R2L @   8; E =     -6.7498651973758230 >>>       0.02 sec 
*** SWEEP:   2, R2L @   7; E =     -6.7498651973758186 >>>       0.02 sec 
*** SWEEP:   2, R2L @   6; E =     -6.7498651973758221 >>>       0.02 sec 
*** SWEEP:   2, R2L @   5; E =     -6.7498651973758230 >>>       0.02 sec 
*** SWEEP:   2, R2L @   4; E =     -6.7498651973758257 >>>       0.02 sec 
*** SWEEP:   2, R2L @   3; E =     -6.7498651973758230 >>>       0.02 sec 
*** SWEEP:   2, R2L @   2; E =     -6.7498651973758266 >>>       0.02 sec 
*** SWEEP:   2, L2R @   1; E =     -6.7498651973758257 >>>       0.01 sec 
*** SWEEP:   2, L2R @   2; E =     -6.7498651973758257 >>>       0.02 sec 
*** SWEEP:   2, L2R @   3; E =     -6.7498651973758221 >>>       0.02 sec 
*** SWEEP:   2, L2R @   4; E =     -6.7498651973758239 >>>       0.02 sec 
*** SWEEP:   2, L2R @   5; E =     -6.7498651973758239 >>>       0.02 sec 
*** SWEEP:   2, L2R @   6; E =     -6.7498651973758204 >>>       0.02 sec 
*** SWEEP:   2, L2R @   7; E =     -6.7498651973758248 >>>       0.02 sec 
*** SWEEP:   2, L2R @   8; E =     -6.7498651973758212 >>>       0.02 sec 
*** SWEEP:   2, L2R @   9; E =     -6.7498651973758212 >>>       0.02 sec 
*** SWEEP:   2, L2R @  10; E =     -6.7498651973758248 >>>       0.02 sec 
*** SWEEP:   2, L2R @  11; E =     -6.7498651973758275 >>>       0.02 sec 
*** SWEEP:   2, L2R @  12; E =     -6.7498651973758284 >>>       0.02 sec 
*** SWEEP:   2, L2R @  13; E =     -6.7498651973758266 >>>       0.02 sec 
*** SWEEP:   2, L2R @  14; E =     -6.7498651973758221 >>>       0.02 sec 
*** SWEEP:   2, L2R @  15; E =     -6.7498651973758239 >>>       0.02 sec 
****** DMRG CONVERGED ******                                             5.86 sec 

fprintf('E = %23.16f \n\n', ene);

E =     -6.7498651973758239 

DMRG is converged, but the result is not good. We can compare the DMRG result of the ground-state energy

with the Bethe Ansatz result, which is exact. Below is the list of the Bethe Ansatz solutions of the ground-state

energy for finite chain length N:
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(Source: https://dmrg101-tutorial.readthedocs.io/en/latest/infinite_heisenberg.html )

The error here is about 3%, which is not that different from the error of the pure iterative diagonalization result.

The exploitation of the symmetry improves the accuracy and performance for most of cases, but here it is

the opposite. The single-site DMRG with symmetry typically gets stuck to local minima, while the one without

symmetry is less susceptible! This issue of the single-site DMRG can be overcome by using the two-site

update. The detailed explanation of this will be given during lectures.

Exercise: Two-site DMRG by using QSpace
Implement the two-site DMRG by using QSpace. Compute the ground-state energies of the spin-1/2

Heisenberg chains, and compare the DMRG results with the Bethe Ansatz solutions.
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