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QSpace is a powerful tensor network library developed by Andreas Weichselbaum, a long-term colleague of

our group. This library enables the generation and manipulation of tensors that respect general Abelian and

non-Abelian symmetries. It consists of many MATLAB functions (.m), as well as MEX functions (.mexa64

or .mexamaci64) that are binary files written in C++. These MEX functions are used for computationally

demanding jobs, such as contraction and eigendecomposition. Thus using the QSpace library can be more

efficient, even without exploiting symmetries, than the bare MATLAB code!

The goal of this tutorial is to provide the practical knowledge on using the QSpace library and understanding

QSpace objects. For the details of physical and mathematical concepts (e.g., IROP, IREP), please refer to A.

Weichselbaum, Ann. Phys. 327, 2972 (2012) and A. Weichselbaum, Phys. Rev. Research 2, 023385 (2020).

Clebsch-Gordan coefficient data
The key idea of QSpace is to decompose the tensor into two parts, Clebsch-Gordan coefficients and reduced

matrix elements, and to treat them separately. The reduced matrix elements may change depending on the

system parameters, while the Clebsch-Gordan coefficients are generic. For example, two spin-1/2's should be

always combined anti-symmetrically to make the spin singlet, independent of system parameters. So, once the

coefficients are generated, they can be recycled for the next calculations.

In this regard, the QSpace library generates Clebsch-Gordan coefficient data on the fly, e.g., when tensors are

manipulated. The Clebsch-Gordan coefficients are tensors by themselves, and stored in a disk drive. The path

to the directory in which the data is stored is saved as a MATLAB environment variable (not a shell variable)

RC_STORE. To see the path, type in the MATLAB Command Window:

getenv('RC_STORE')

ans = 
'/Users/S.Lee/data/RCStore'

startup.m which we provided automatically sets the path and creates the corresponding directory, if not

exists.

The Clebsch-Gordan data generated on the fly are indexed depending on their order of appearance. Therefore,

it is possible that the same Clebsch-Gordan coefficients are indexed differently, or vice versa. So manipulating

(e.g., contracting) one QSpace object generated from the calculation on one machine and another QSpace

objected generated from the other calculation on the other machine can lead to the inconsistency of the

Clebsch-Gordan coefficients. Therefore, it is advised to generate large enough set of the Clebsch-Gordan data

and use the data set for different calculations. However, for the tutorial here, this is not important: The Clebsch-

Gordan coefficients relevant to this tutorial can be generated from scratch with very small computational cost.

Generate local operators
The first step of using QSpace is to identify which symmetries in the system are to be exploited. Then we

generate the tensors that respect such symmetries. The tensors for a local space (e.g., one lattice site) are
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generated by getLocalSpace. For example, we obtain the operators that act on a spin-1/2 site and respect

SU(2) spin symmetry:

clear
[S,I] = getLocalSpace('Spin',1/2);
S % spin operator

S = 
     Q:  1x [1 1 1]  having 'SU2',   operator,   { , *, * }
  data:  3-D double (112 bytes)      1 x 1 x 1 => 2 x 2 x 3

     1.  1x1x1      | 2x2x3      [ 1 ; 1 ; 2 ]      -1.225

I % struct that contains various information

I = struct with fields:
    Sloc: 0.5000
     SOP: [1×1 struct]
     sym: 'SpinS'
       U: [2×2 double]
      Is: [1×1 struct]
       E: [1×1 QSpace]

I.E % identity operator

ans = 
     Q:  1x [1 1]  having 'SU2',   { , * }
  data:  2-D double (112 bytes)      1 x 1 => 2 x 2

     1.  1x1        | 2x2        [ 1 ; 1 ]           1.  {1.414}

Meaning of the displayed information will be explained in the next section.

On the other hand, the operators for one spinful fermionic site, which respect U(1) charge and SU(2) spin

symmetries, are generated by:

[F,Z,S,I] = getLocalSpace('FermionS','Acharge,SU2spin','NC',1);

Here 'FermionS' means spinful fermion, 'Acharge,SU2spin' means U(1) charge (A from Abelian) and

SU(2) spin symmetries, and 'NC',1 means that there is only one channel (NC from number of channels).

F % particle annihilation operator

F = 
     Q:  2x [2 2 2]  having 'A,SU2',   operator,   { , *, * }
  data:  3-D double (224 bytes)      2 x 2 x 1 => 3 x 3 x 2

     1.  1x1x1      | 1x2x2      [ -1 0 ;  0 1 ; -1 1 ]      -1.414
     2.  1x1x1      | 2x1x2      [  0 1 ;  1 0 ; -1 1 ]      -1.414

Z % fermionic sign operator

Z = 
     Q:  3x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (336 bytes)      3 x 3 => 4 x 4

     1.  1x1        | 1x1        [ -1 0 ; -1 0 ]           1.
     2.  1x1        | 2x2        [  0 1 ;  0 1 ]          -1.  {1.414}
     3.  1x1        | 1x1        [  1 0 ;  1 0 ]           1.
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S % spin operator

S = 
     Q:  1x [2 2 2]  having 'A,SU2',   operator,   { , *, * }
  data:  3-D double (112 bytes)      1 x 1 x 1 => 2 x 2 x 3

     1.  1x1x1      | 2x2x3      [  0 1 ;  0 1 ;  0 2 ]      -1.225

I.E % identity operator

ans = 
     Q:  3x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (336 bytes)      3 x 3 => 4 x 4

     1.  1x1        | 1x1        [ -1 0 ; -1 0 ]           1.
     2.  1x1        | 2x2        [  0 1 ;  0 1 ]           1.  {1.414}
     3.  1x1        | 1x1        [  1 0 ;  1 0 ]           1.

F and S are rank-3 tensors, since they change charge and spin quantum numbers. On the other hand, Z and

I.E are rank-2 tensors, since they do not change quantum numbers; that is, they are scalars in terms of the

Clebsch-Gordan coefficients.

getLocalSpace can deal with general situations. For details, type in the MATLAB command window: help

getLocalSpace

Differences from the TN tutorial materials
Careful readers might have realized that the syntax of getLocalSpace here is similar to that of TN/Tensor/

getLocalSpace which has been used for the previous tutorials. Actually, the TN tutorial materials are

designed to be consistent with the syntax convention of the QSpace library. Here by TN, I mean the tutorial

materials that we have used so far during the course, whose computational routines are pure MATLAB .m files.

There are, however, a few differences between the conventions of TN and QSpace that need to be kept in

mind. 

1. The last output I of getLocalSpace in the TN material is the identity operator, while I from the QSpace

function is the struct variable that contains the identity operator.

2. The leg order convention is different. For the rank-2 tensors (e.g., identity I and fermion sign Z), the

convention is the same as in the TN material.

The numbers attached to the legs are the order of legs. The first (bottom) and second (top) legs are to be

contracted with bra and ket states, respectively. On the other hand, the QSpace convention for the rank-3

tensors (e.g., fermion annihilation F and spin S) generated by getLocalSpace is different:
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Here the first and second legs have the same roles as for the rank-2 tensors, while the third leg indicates the

nature of operator (e.g., spin-raising, annihilating particle of a specific spin at a specific channel). In the TN

convention, the top leg is at the third place and the operator leg is at the second place.

While the TN convention is better compatible with covariant formulation of tensors, the QSpace convention has

practical advantage. Typically, the bottom and top legs of tensors can involve large dimensions. For example,

consider a situation when we compute correlator of two operators acting on different sites in a one-dimensional

system. We should contract the bra and ket tensors and the local operators iteratively, all the way from one

site to the other. At each iteration, the dimensions of the bottom and top legs are bond dimensions, while the

operator leg has small dimensions (e.g., 1 for a single spin-z operator and 3 for a full spin operator). Practically,

it is better to place the legs of the largest dimensions to the front; then in most cases the tensors are matrices,

not multi-dimensional arrays.

3. The leg directions are incorporated in QSpace objects, while the leg directions are rather bookkeeping

in the TN materials. The tensors in the TN materials are just matrices or multi-dimensional arrays that cannot

bring the information of leg directions. On the other hand, since the legs of QSpace objects are associated with

quantum numbers, the directions of legs (inward or outward) are crucial.

Understand QSpace objects
Let me explain how to interpret the displayed information, with the example of identity operator I.E and particle

annihilation operator F.

I.E

ans = 
     Q:  3x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (336 bytes)      3 x 3 => 4 x 4

     1.  1x1        | 1x1        [ -1 0 ; -1 0 ]           1.
     2.  1x1        | 2x2        [  0 1 ;  0 1 ]           1.  {1.414}
     3.  1x1        | 1x1        [  1 0 ;  1 0 ]           1.

The identity operator I.E shows that there are three symmetry sectors: [-1 0] is for empty state (no charge,

no spin), [0 1] is for singly occupied doublets (one charge, total spin 1/2; doublet means for two states

), and [1 0] is for doubly occupied state (two charges, total spin 0; the doubly occupied state for a

single orbital should be spin singlet, due to Pauli exclusion principle).

F

F = 
     Q:  2x [2 2 2]  having 'A,SU2',   operator,   { , *, * }
  data:  3-D double (224 bytes)      2 x 2 x 1 => 3 x 3 x 2

     1.  1x1x1      | 1x2x2      [ -1 0 ;  0 1 ; -1 1 ]      -1.414
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     2.  1x1x1      | 2x1x2      [  0 1 ;  1 0 ; -1 1 ]      -1.414

From top left to bottom right:

• Q: 2x [2 2 2] : first 2x means that there are two symmetry sectors. [2 2 2] means that there are

three legs (so three 2's) and each leg has two quantum numbers (so 2 each).

• having 'A,SU2' : two quantum numbers are for U(1) (Abelian, so A) and SU(2) symmetries,

respectively.

• operator : FF is an operator with three legs.

• { , *, * } : itag (index tag) for each leg. The itag indcates the name and the direction of legs.

Here the names are not given (since it is just generated from getLocalSpace), while indicating the

directions. Empty for the first leg means inward, and * for the second and third legs means outward. See

the next sections for the detail of itags.

• data: 3-D double (240 bytes) : the data sector (i.e. reduced matrix elements) are three-

dimensional array (since FF is rank-3), and occupies 240 bytes.

• 2 x 2 x 1 : Hilbert space dimension, in terms of symmetry multiplets. It means that there are 2, 2, and

1 multiplets for the first, second, and third legs, respectively.

• 3 x 3 x 2 : Hilbert space dimension, in terms of bare states (not multiplets). It means that there are 3,

3, and 2 states for the first, second, and third legs, respectively.

• 1. 1x1x1 | 1x2x2 : The first symmetry sector (so 1.) has the reduced matrix elements as 1x1x1

array in the multiplet basis. And a single multiplet representing the sector has multiplet dimension 1x2x2,

that is, the multiplet corresponds to one state for the first leg and two states for the second and third legs,

respectively.

• [ -1 0 ; 0 1; -1 1 ] : Quantum numbers for each symmetry sector. Each chunk separated

by ; indicates the quantum number for each leg. As we used 'Acharge,SU2spin' option for

getLocalSpace, the first number for each chunk is the charge quantum number (number of charges

with respect to half filling) and the second number is the spin quantum number (total spin multiplied by

2). So we see that, for this first symmetry sector, the first leg space has no charge (charge quantum

number -1, since half filling has one charge), and no spin (spin quantum number 0). And the second leg

space has one charge (charge quantum number 0) and total spin 1/2 (spin quantum number 1). Finally

the quantum number [-1 1] of the third chunk shows how the operator FF changes quantum number; it

decreases charge quantum number by 1 (since it is an annihilation operator) and it is indeed a spinor of

total spin 1/2 (spin quantum number is the total spin multiplied by 2)

• -1.414 : It is the reduced matrix element for the first symmetry sector.

Access data in QSpace objects
The information of QSpace objects can be accessed in a similar way as for struct variables. The quantum

numbers of F are accessed by:

F.Q % cell array of quantum numbers

ans = 1×3 cell

1 2 3

1 [-1,0;0,1] [0,1;1,0] [-1,1;-1...
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F.Q{1} % first leg

ans = 2×2
    -1     0
     0     1

F.Q{2} % second leg

ans = 2×2
     0     1
     1     0

F.Q{3} % third leg

ans = 2×2
    -1     1
    -1     1

A m-th row of F.Q{n} indicates the quantum number of the m-th symmetry sector for the n-th leg space.

The reduced matrix elements are accessed by:

F.data % cell array of reduced matrix element data

ans = 2×1 cell

1

1 -1.4142

2 -1.4142

celldisp(F.data) % display the contents of a cell array

 
ans{1} =
 
   -1.4142

 
 
ans{2} =
 
   -1.4142

 

Of course, we can change the values of the data sector. For example,

F2 = F;
F2.data{1} = 10;
F2

F2 = 
     Q:  2x [2 2 2]  having 'A,SU2',   operator,   { , *, * }
  data:  3-D double (224 bytes)      2 x 2 x 1 => 3 x 3 x 2

     1.  1x1x1      | 1x2x2      [ -1 0 ;  0 1 ; -1 1 ]          10.
     2.  1x1x1      | 2x1x2      [  0 1 ;  1 0 ; -1 1 ]      -1.414
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Also we can set and edit the itags (index tags). The itags are saved as the cell array .info.itags. Each cell

element is a char array, which should be consistent with the direction of each leg. When the itag of a leg ends

with *, it means that the leg is outward. Otherwise, the leg is inward. Since the original direction was in-out-out,

the first itag should not include * and the second and third itags should end with *.

F2.info.itags = {'s00','s00*','op*'};
F2

F2 = 
     Q:  2x [2 2 2]  having 'A,SU2',   operator,   { s00, s00*, op* }
  data:  3-D double (224 bytes)      2 x 2 x 1 => 3 x 3 x 2

     1.  1x1x1      | 1x2x2      [ -1 0 ;  0 1 ; -1 1 ]          10.
     2.  1x1x1      | 2x1x2      [  0 1 ;  1 0 ; -1 1 ]      -1.414

Here the name of the space, s00, for the first and second legs means that the legs act on the space of the local

site s00. And the name op for the third leg means that it indicates the nature of the operator, not acting on the

physical space.

One can try to set the itags to be inconsistent with the original itags. Then the QSpace library detects the

inconsistency in the data and gives error message.

try
    F2.info.itags = {'s00','s00','op'};
    F2
catch e
    getReport(e);
end

F2 = 
     Q:  2x [2 2 2]  having 'A,SU2',   operator,   { s00, s00, op }

./clebsch.cc:3605    15:29:54  ERR init() got CGR QSet mismatch

./clebsch.cc:3605    15:29:54  ERR  U(1) (-1,0,-1) <>  U(1) (-1,0*,-1*)

The itags are really useful when we treat many tensors at the same time. For example, when many tensors

are contracted sequentially (as in TN/Tensor/updateLeft), tracking down the leg order at each contraction

step is quite tedious job, and is often the source of bug, if one makes a mistake in counting the leg order. By

using itags, however, the QSpace library performs the sanity check for the compatibility of legs, and enables the

contraction multiple tensors/legs with simple syntax!

We emphasize that one can directly edit only the reduced matrix elements (.data) and itags
(.info.itags) of QSpace objects. Tinkering any other part of QSpace object may break the consistency of

data; and the QSpace library detects such consistency, as you see from the above example of wrong itags.

Basic operations
QSpace library provides an efficient way of manipulating the tensors, in a similar way as the standard numerical

arrays of MATLAB.

First, one can generate the array of empty QSpace objects, similarly as zeros.
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M = QSpace

M =  (empty QSpace)

M = QSpace(3,1)

M(1) = (empty QSpace)
...
M(3) = (empty QSpace)

size(M)

ans = 1×2
     3     1

And we can add and subtract QSpace objects.

Z

Z = 
     Q:  3x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (336 bytes)      3 x 3 => 4 x 4

     1.  1x1        | 1x1        [ -1 0 ; -1 0 ]           1.
     2.  1x1        | 2x2        [  0 1 ;  0 1 ]          -1.  {1.414}
     3.  1x1        | 1x1        [  1 0 ;  1 0 ]           1.

I.E

ans = 
     Q:  3x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (336 bytes)      3 x 3 => 4 x 4

     1.  1x1        | 1x1        [ -1 0 ; -1 0 ]           1.
     2.  1x1        | 2x2        [  0 1 ;  0 1 ]           1.  {1.414}
     3.  1x1        | 1x1        [  1 0 ;  1 0 ]           1.

Z + I.E % plus

ans = 
     Q:  3x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (336 bytes)      3 x 3 => 4 x 4

     1.  1x1        | 1x1        [ -1 0 ; -1 0 ]           2.
     2.  1x1        | 2x2        [  0 1 ;  0 1 ]           0.  {1.414}
     3.  1x1        | 1x1        [  1 0 ;  1 0 ]           2.

Z - I.E % minus

ans = 
     Q:  3x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (336 bytes)      3 x 3 => 4 x 4

     1.  1x1        | 1x1        [ -1 0 ; -1 0 ]           0.
     2.  1x1        | 2x2        [  0 1 ;  0 1 ]          -2.  {1.414}
     3.  1x1        | 1x1        [  1 0 ;  1 0 ]           0.

Multiply a number to QSpace object.

Z*3 % multiply number
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ans = 
     Q:  3x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (336 bytes)      3 x 3 => 4 x 4

     1.  1x1        | 1x1        [ -1 0 ; -1 0 ]           3.
     2.  1x1        | 2x2        [  0 1 ;  0 1 ]          -3.  {1.414}
     3.  1x1        | 1x1        [  1 0 ;  1 0 ]           3.

Take complex conjugation.

F

F = 
     Q:  2x [2 2 2]  having 'A,SU2',   operator,   { , *, * }
  data:  3-D double (224 bytes)      2 x 2 x 1 => 3 x 3 x 2

     1.  1x1x1      | 1x2x2      [ -1 0 ;  0 1 ; -1 1 ]      -1.414
     2.  1x1x1      | 2x1x2      [  0 1 ;  1 0 ; -1 1 ]      -1.414

conj(F) % complex conjugation

ans = 
     Q:  2x [2 2 2]  having 'A,SU2',   operator,   { *, ,  }
  data:  3-D double (224 bytes)      2 x 2 x 1 => 3 x 3 x 2

     1.  1x1x1      | 1x2x2      [ -1 0 ;  0 1 ; -1 1 ]      -1.414
     2.  1x1x1      | 2x1x2      [  0 1 ;  1 0 ; -1 1 ]      -1.414

F1 = F;
F1.data{1} = 1i;
conj(F1)

ans = 
     Q:  2x [2 2 2]  having 'A,SU2',   operator,   { *, ,  },   complex
  data:  3-D double (232 bytes)      2 x 2 x 1 => 3 x 3 x 2

     1.  1x1x1      | 1x2x2      [ -1 0 ;  0 1 ; -1 1 ]          -1i
     2.  1x1x1      | 2x1x2      [  0 1 ;  1 0 ; -1 1 ]      -1.414

We see that the complex conjugation of QSpace object flips all the leg directions (inward vs. outward) and takes

the complex conjugate to the reduced matrix elements (numerical arrays in .data{..}).

The permutation of the legs can be done by permute, which is the wrap-up routine for the binary MEX function

permuteQS.

permute(F,[2 1 3]) % permute top and bottom legs

ans = 
     Q:  2x [2 2 2]  having 'A,SU2',   operator,   { *, , * }
  data:  3-D double (224 bytes)      2 x 2 x 1 => 3 x 3 x 2

     1.  1x1x1      | 2x1x2      [  0 1 ; -1 0 ; -1 1 ]      -1.414
     2.  1x1x1      | 1x2x2      [  1 0 ;  0 1 ; -1 1 ]      -1.414

permute(F,'213') % equivalent expression to the above

ans = 
     Q:  2x [2 2 2]  having 'A,SU2',   operator,   { *, , * }
  data:  3-D double (224 bytes)      2 x 2 x 1 => 3 x 3 x 2
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     1.  1x1x1      | 2x1x2      [  0 1 ; -1 0 ; -1 1 ]      -1.414
     2.  1x1x1      | 1x2x2      [  1 0 ;  0 1 ; -1 1 ]      -1.414

Also the complex conjugation can be done together with permutation, by setting the option 'conj' in the

syntax of permute. Then the Hermitian conjugate, which is the combination of the complex conjugate and

transpose, to the particle annihilation operator F is obtained by:

permute(F,[2 1 3],'conj') % creation operator

ans = 
     Q:  2x [2 2 2]  having 'A,SU2',   operator,   { , *,  }
  data:  3-D double (224 bytes)      2 x 2 x 1 => 3 x 3 x 2

     1.  1x1x1      | 2x1x2      [  0 1 ; -1 0 ; -1 1 ]      -1.414
     2.  1x1x1      | 1x2x2      [  1 0 ;  0 1 ; -1 1 ]      -1.414

permute(F,'213*') % equivalent expression to the above

ans = 
     Q:  2x [2 2 2]  having 'A,SU2',   operator,   { , *,  }
  data:  3-D double (224 bytes)      2 x 2 x 1 => 3 x 3 x 2

     1.  1x1x1      | 2x1x2      [  0 1 ; -1 0 ; -1 1 ]      -1.414
     2.  1x1x1      | 1x2x2      [  1 0 ;  0 1 ; -1 1 ]      -1.414

That is, it becomes the particle creation operator. The tensor network diagram for this is:

The Hermitian conjugation for rank-2 operator is:

permute(I.E,[2 1],'conj')

ans = 
     Q:  3x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (336 bytes)      3 x 3 => 4 x 4

     1.  1x1        | 1x1        [ -1 0 ; -1 0 ]           1.
     2.  1x1        | 2x2        [  0 1 ;  0 1 ]           1.  {1.414}
     3.  1x1        | 1x1        [  1 0 ;  1 0 ]           1.

We see that the identity operator is Hermtian:

I.E - permute(I.E,[2 1],'conj')

ans = 
     Q:  3x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (336 bytes)      3 x 3 => 4 x 4

     1.  1x1        | 1x1        [ -1 0 ; -1 0 ]           0.
     2.  1x1        | 2x2        [  0 1 ;  0 1 ]           0.  {1.414}
     3.  1x1        | 1x1        [  1 0 ;  1 0 ]           0.

Interestingly, the wrap-up function has the same name as the MATLAB bulit-in permute. Will it be a problem?

Answer is no. MATLAB finds and executes a proper routine depending on the type of input variables. When it
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detects QSpace objects as input, it calls the routine QSpace/Class/@QSpace/permute which is the wrap-up

of the MEX function QSpace/bin/permuteQS.

which permute(F)

/Users/S.Lee/Documents/MATLAB/QSpace_v3/Class/@QSpace/permute.m  % QSpace method

On the other hand, if we give a numeric array, then MATLAB calls the built-in function.

M = [1,2;3,4];
which permute(M)

built-in (/Applications/MATLAB_R2020a.app/toolbox/matlab/elmat/@double/permute)  % double method

permute(M,[2 1]) % transpose

ans = 2×2
     1     3
     2     4

To see the documentations for MEX functions (which are binary files stored in QSpace/bin/), type in the

MATLAB Command Window:

>> Name_of_MEX_function -?

For example, for permuteQS, type:

permuteQS -?

   Usage: A = permuteQS(A, P [,'conj'])
 
       permute input QSpace using given permutation P.
 
       Optional trailing 'conj' also applies (complex) conjugation
       (note that this also affects real QSpaces in that qdir and
       itags are altered!).
 
       For convenience, P [,'conj'] may also be represented as
       single string, e.g. [2 1],'conj' is equivalent to '2,1;*'
       or '21*' where the convention on string notation
       follows that of contraction indices [ctrIdx].
 
       NB! [06/02/2019] the provided permutation can be shorter
       than the rank of the QSpace; in this case it only affects the
       leading range of indices, i.e., acts like an identity
       on the remainder of indices.
 
   AW (C) Aug 2006 ; May 2010 ; Oct 2014

Select subspace
We can select part of symmetry sectors, by using getsub.

I.E

ans = 
     Q:  3x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (336 bytes)      3 x 3 => 4 x 4
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     1.  1x1        | 1x1        [ -1 0 ; -1 0 ]           1.
     2.  1x1        | 2x2        [  0 1 ;  0 1 ]           1.  {1.414}
     3.  1x1        | 1x1        [  1 0 ;  1 0 ]           1.

getsub(I.E,2) % select the second sector

ans = 
     Q:  1x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (112 bytes)      1 x 1 => 2 x 2

     1.  1x1        | 2x2        [  0 1 ;  0 1 ]           1.  {1.414}

getsub(I.E,[1 3]) % select the first and third sectors

ans = 
     Q:  2x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (224 bytes)      2 x 2 => 2 x 2

     1.  1x1        | 1x1        [ -1 0 ; -1 0 ]           1.
     2.  1x1        | 1x1        [  1 0 ;  1 0 ]           1.

To choose the sectors of specific quantum numbers, we can combine getsub, find, and ismember (the latter

two are MATLAB built-ins.)

getsub(I.E,find(ismember(I.E.Q{1},[0 1],'rows'))) % choose [0 1] sector

ans = 
     Q:  1x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (112 bytes)      1 x 1 => 2 x 2

     1.  1x1        | 2x2        [  0 1 ;  0 1 ]           1.  {1.414}

It can be done also with all and bsxfun.

getsub(I.E,find(all(bsxfun(@eq,I.E.Q{1},[0 1]),2))) % the same

ans = 
     Q:  1x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (112 bytes)      1 x 1 => 2 x 2

     1.  1x1        | 2x2        [  0 1 ;  0 1 ]           1.  {1.414}

Contraction
The contraction of tensors can be done by contract (which is the wrap-up of MEX function contractQS).

By exploiting symmetries, the contraction of QSpace objects is done for every symmetry sectors. Only the
sectors of two tensors, whose quantum numbers are identical, are to be contracted. And the QSpace

library automatically and seamlessly treats the contraction of the Clebsch-Gordan coefficients; we users need to

only care about reduced matrix elements.

For example, the particle number operator  can be obtained by:

NF = contract(F,'1,3;*',F,'1,3')

NF = 
     Q:  2x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (224 bytes)      2 x 2 => 3 x 3
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     1.  1x1        | 2x2        [  0 1 ;  0 1 ]           1.  {1.414}
     2.  1x1        | 1x1        [  1 0 ;  1 0 ]           2.

We see that the sector of quantum number [0 1] has one particle (see .data{1} is 1) and the sector of [1

0] has two (see .data{2} is 2).

In the usage of contract, * at the end of the second input '1,3;*' means that the first input F is complex

conjugated before contraction. And '1,3' in the second and fourth inputs mean that the first legs ('1' and

'1' each) and the third legs ('3' and '3' each) are contracted, respectively. The tensor network diagram for

this is:

Here F* means the complex conjugate to F.

By using itags, the contraction can be made simpler. For example, the number operator can be obtained by:

F1 = F;
F1.info.itags = {'s00','s00*','op*'};
NF = contract(F1,'!2*',F1)

NF = 
     Q:  2x [2 2]  having 'A,SU2',   { s00, s00* }
  data:  2-D double (224 bytes)      2 x 2 => 3 x 3

     1.  1x1        | 2x2        [  0 1 ;  0 1 ]           1.  {1.414}
     2.  1x1        | 1x1        [  1 0 ;  1 0 ]           2.

In the usage of contract here, * at the end of the second input '!2*' means that the first input F is complex

conjugated. And !2 in the second input means that all the legs of the first input except the first leg ('!1') are

contracted to the legs of the third input, as long as their itags match. Only the pair of outward leg (e.g., with
itag 's00*') and inward leg (e.g., with itag 's00') of the same name can be contracted. Here, the first

legs and the third legs have compatible itags, so they are contracted.

Also, the contract function supports multiple contractions in a single line syntax. For example, the squared

number operator  can be obtained by:

N2 = contract(F1,'!2*',{F1,'!1',{F1,'!2*',F1}})

N2 = 
     Q:  2x [2 2]  having 'A,SU2',   { s00, s00* }
  data:  2-D double (224 bytes)      2 x 2 => 3 x 3

     1.  1x1        | 2x2        [  0 1 ;  0 1 ]           1.  {1.414}
     2.  1x1        | 1x1        [  1 0 ;  1 0 ]           4.
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In such syntax, the contraction inside the inner-most parenthesis { } is performed first, and then the

contraction for the next inner-most parenthesis is done, and so on. In the above example, the parenthesis are

given so that the contraction is performed over two right-most tensors, and contract the left ones iteratively. For

details, type:

>> contractQS -?

Rank-2 tensors
Rank-2 tensors are of the simplest type. (Quick exercise: Why not rank-1?) They are scalar in terms of

Clebsch-Gordan coefficients and there is no (outer) multiplicity of symmetry sectors. And their reduced matrix

elements form matrices.

So the QSpace library enables to treat rank-2 QSpace objects, in a way that usual matrices are treated by

MATLAB built-in functions.

Z.' % transpose

ans = 
     Q:  3x [2 2]  having 'A,SU2',   { *,  }
  data:  2-D double (336 bytes)      3 x 3 => 4 x 4

     1.  1x1        | 1x1        [ -1 0 ; -1 0 ]           1.
     2.  1x1        | 2x2        [  0 1 ;  0 1 ]          -1.  {1.414}
     3.  1x1        | 1x1        [  1 0 ;  1 0 ]           1.

Z' % Hermitian conjugate

ans = 
     Q:  3x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (336 bytes)      3 x 3 => 4 x 4

     1.  1x1        | 1x1        [ -1 0 ; -1 0 ]           1.
     2.  1x1        | 2x2        [  0 1 ;  0 1 ]          -1.  {1.414}
     3.  1x1        | 1x1        [  1 0 ;  1 0 ]           1.

Z' - Z % Z is Hermitian

ans = 
     Q:  3x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (336 bytes)      3 x 3 => 4 x 4

     1.  1x1        | 1x1        [ -1 0 ; -1 0 ]           0.
     2.  1x1        | 2x2        [  0 1 ;  0 1 ]           0.  {1.414}
     3.  1x1        | 1x1        [  1 0 ;  1 0 ]           0.

Z * I.E % matrix multiplication as contraction

ans = 
     Q:  3x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (336 bytes)      3 x 3 => 4 x 4

     1.  1x1        | 1x1        [ -1 0 ; -1 0 ]           1.
     2.  1x1        | 2x2        [  0 1 ;  0 1 ]          -1.  {1.414}
     3.  1x1        | 1x1        [  1 0 ;  1 0 ]           1.
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As in the case of permute explained above, MATLAB can execute different functions depending on the type of

inputs. That is, there are several QSpace functions that override the MATLAB built-in functions.

This simplification also works for some rank-3 tensors (whose .info.otype is set as 'operator').

F' % Hermitian conjugate, the result is particle creation operators

ans = 
     Q:  2x [2 2 2]  having 'A,SU2',   operator,   { , *,  }
  data:  3-D double (224 bytes)      2 x 2 x 1 => 3 x 3 x 2

     1.  1x1x1      | 2x1x2      [  0 1 ; -1 0 ; -1 1 ]      -1.414
     2.  1x1x1      | 1x2x2      [  1 0 ;  0 1 ; -1 1 ]      -1.414

However, it is advisable to use permute and contract in general, to avoid any mistake.

Vacuum space
The left end and the right end of the matrix product states (MPS) are dummy legs of dimension 1. These

dummy legs are introduced to represent all the constituent tensors (so-called A and B tensors) as being

rank-3. Thus the dummy legs point to the space which has nothing, i.e., vacuum. The vacuum space carries no

quantum number at all, and it is different from the empty state which has specific quantum number. The vacuum

space for given set of symmetries is obtained by using getvac:

getvac(I.E)

ans = 
     Q:  1x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (112 bytes)      1 x 1 => 1 x 1

     1.  1x1        | 1x1        [  0 0 ;  0 0 ]           1.

Generate identity operators and isometries
We can obtain identity operators and isometries by using getIdentity (which is the wrap-up of MEX function

getIdentityQS). There are three contexts of using getIdentity.

1. Obtain the identity operator for a given leg space.

For example, the following provides the identity operator for the Hilbert space of the second leg of F.

FE2 = getIdentity(F,2)

FE2 = 
     Q:  2x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (224 bytes)      2 x 2 => 3 x 3

     1.  1x1        | 2x2        [  0 1 ;  0 1 ]           1.  {1.414}
     2.  1x1        | 1x1        [  1 0 ;  1 0 ]           1.

Note that FE2 is different from the identity operator I.E that is for the whole Hilbert space of a spinful fermionic

site, since FE2 does not contain the subspace in which there is no particle (with quantum number [-1 0]).

I.E - FE2
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ans = 
     Q:  3x [2 2]  having 'A,SU2',   { , * }
  data:  2-D double (336 bytes)      3 x 3 => 4 x 4

     1.  1x1        | 1x1        [ -1 0 ; -1 0 ]           1.
     2.  1x1        | 2x2        [  0 1 ;  0 1 ]   -2.22e-16  {1.414}
     3.  1x1        | 1x1        [  1 0 ;  1 0 ]           0.

2. Generate the isometry that combines the spaces of two legs.

Let's create the isometry (so-called A tensors) which combines two local spaces (each of which spans for a

spinful fermionic site) to span the product space. In this case, to distinguish different local spaces, it is advised

to use itags.

E1 = I.E;
E1.info.itags = {'s00','s00*'};
E2 = I.E;
E2.info.itags = {'s01','s01*'};
A = getIdentity(E1,2,E2,2)

A = 
     Q:  10x [2 2 2]  having 'A,SU2',   A-matrix,   { s00, s01, * }
  data:  3-D double (1200 bytes)      3 x 3 x 10 => 4 x 4 x 16

     1.  1x1x1      | 1x1x1      [ -1 0 ; -1 0 ; -2 0 ]           1.
     2.  1x1x2      | 1x2x2      [ -1 0 ;  0 1 ; -1 1 ]  16 B
     3.  1x1x2      | 2x1x2      [  0 1 ; -1 0 ; -1 1 ]  16 B
     4.  1x1x3      | 1x1x1      [ -1 0 ;  1 0 ;  0 0 ]  24 B
     5.  1x1x3      | 2x2x1      [  0 1 ;  0 1 ;  0 0 ]  24 B
     6.  1x1x3      | 1x1x1      [  1 0 ; -1 0 ;  0 0 ]  24 B
     7.  1x1x1      | 2x2x3      [  0 1 ;  0 1 ;  0 2 ]       1.732
     8.  1x1x2      | 2x1x2      [  0 1 ;  1 0 ;  1 1 ]  16 B
     9.  1x1x2      | 1x2x2      [  1 0 ;  0 1 ;  1 1 ]  16 B
    10.  1x1x1      | 1x1x1      [  1 0 ;  1 0 ;  2 0 ]           1.

The corresponding diagram is:

This isometry is left-normalized. (Quick exercise: check this!) Such isometries are the building blocks of the

MPS.

In the lecture course, the convention for ordering the legs of isometries is left-bottom-right, as A is so here.

However, many functions and programs in and based on the QSpace library use different convention: left-right-

bottom. The same reason, explained in the previous section on the convention differences, applies here as well.
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Typically the left and right legs have the largest dimensions, while the bottom leg acts on low-dimensional local

space. So placing the left and right legs before the bottom leg is more practical.

getIdentity also supports (i) setting the itag for a newly generated leg spanning the product space and (ii)

permuting legs in a single line.

A = getIdentity(E1,2,E2,2,'A01*',[1 3 2])

A = 
     Q:  10x [2 2 2]  having 'A,SU2',   A-matrix,   { s00, A01*, s01 }
  data:  3-D double (1200 bytes)      3 x 10 x 3 => 4 x 16 x 4

     1.  1x1x1      | 1x1x1      [ -1 0 ; -2 0 ; -1 0 ]           1.
     2.  1x2x1      | 1x2x2      [ -1 0 ; -1 1 ;  0 1 ]  16 B
     3.  1x2x1      | 2x2x1      [  0 1 ; -1 1 ; -1 0 ]  16 B
     4.  1x3x1      | 1x1x1      [ -1 0 ;  0 0 ;  1 0 ]  24 B
     5.  1x3x1      | 2x1x2      [  0 1 ;  0 0 ;  0 1 ]  24 B
     6.  1x3x1      | 1x1x1      [  1 0 ;  0 0 ; -1 0 ]  24 B
     7.  1x1x1      | 2x3x2      [  0 1 ;  0 2 ;  0 1 ]       1.732
     8.  1x2x1      | 2x2x1      [  0 1 ;  1 1 ;  1 0 ]  16 B
     9.  1x2x1      | 1x2x2      [  1 0 ;  1 1 ;  0 1 ]  16 B
    10.  1x1x1      | 1x1x1      [  1 0 ;  2 0 ;  1 0 ]           1.

Here the 5th input is the itag, and the 6th input is the permutation indices.

3. Generate a  symbol to invert the direction of the legs.

As we have learned from the lecture, it is crucial to flip the leg directions to bring the MPS into different

canonical forms (see the material for Tutorial T02a). While inverting leg directions was of mere bookkeeping

purpose in the TN materials, it should be performed explicitly for the QSpace objects.

For example, let's invert the third leg of particle annihilation operator.

F1 = F;
F1.info.itags = {'s00','s00*','op*'};
F1

F1 = 
     Q:  2x [2 2 2]  having 'A,SU2',   operator,   { s00, s00*, op* }
  data:  3-D double (224 bytes)      2 x 2 x 1 => 3 x 3 x 2

     1.  1x1x1      | 1x2x2      [ -1 0 ;  0 1 ; -1 1 ]      -1.414
     2.  1x1x1      | 2x1x2      [  0 1 ;  1 0 ; -1 1 ]      -1.414

I0 = getIdentity(F1,3,'-0')

I0 = 
     Q:  1x [2 2]  having 'A,SU2',   { op, op }
  data:  2-D double (112 bytes)      1 x 1 => 2 x 2

     1.  1x1        | 2x2        [ -1 1 ;  1 1 ]           1.  {1.414}

The generated operator I0 is rank-2, and has all-in legs. By looking at the quantum numbers associated with

the third leg of F1, we see that the first leg of I0 corresponds the third leg of F1. The tensor network diagram

for I0 is:
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Here the left and right legs in solid lines are the first and second legs, respectively.

In this diagram, we see an implicit leg drawn in dashed line, which does not appear in the display information

above. This implicit leg carries all zero quantum numbers since the sum of the quantum numbers of incoming

legs should be the same as the sum of those of outgoing legs (i.e., Kirchoff's law for quantum numbers). Note

that the second quantum number is spin quantum number (multiplied by 2) associated with the SU(2) symmetry,

and the spin quantum number for the implicit leg is zero (which means spin singlet). In other words, the Hilbert

space for this implicit leg is vacuum; that's why the leg does not show up explicitly in the numerical object.

In the space of explicit legs, the  symbol behaves as unitary operation. So the tensor network state on which

 symbol is acted can differ from the original state. One exception is that the explicit leg to be flipped acts on

one-dimensional Hilbert space, where the unitary operation reduces to a single prefactor. Therefore, in general,

it is required to consider the pair of  symbol and its conjugate. When a  symbol is acted, then its conjugate

should be introduced at some point. This notion of pair can be understood intuitively by considering implicit legs

that need to be contracted at last:

Let's return to the example of inverting the third leg of F1. We invert the leg by contracting the  symbol.

F1I = contract(F1,'!1',I0,'!2')

F1I = 
     Q:  2x [2 2 2]  having 'A,SU2',   { s00, s00*, op }
  data:  3-D double (224 bytes)      2 x 2 x 1 => 3 x 3 x 2

     1.  1x1x1      | 1x2x2      [ -1 0 ;  0 1 ;  1 1 ]       1.414
     2.  1x1x1      | 2x1x2      [  0 1 ;  1 0 ;  1 1 ]      -1.414

The resulting F1I is also an annihilation operator, but it has the inward third leg.

For details, type: getIdentityQS -?

Automatic truncation of all-zero sectors
The contract (and some other functions) of the QSpace library may remove the sectors whose reduced

matrix elements (elements of .data{..}) are all zeros. For example, consider the following case.

[F,Z,S,I] = getLocalSpace('FermionS','Acharge,SU2spin','NC',1);
M1 = I.E; M1.info.itags = {'s00','s00*'};
M2 = I.E; M2.info.itags = {'s01','s01*'};
A = getIdentity(M1,2,M2,2,'A01*',[1 3 2]);
contract(A,'!2*',{M1,'!1',{M2,'!1',A}})

ans = 
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     Q:  6x [2 2]  having 'A,SU2',   { A01, A01* }
  data:  2-D double (784 bytes)      10 x 10 => 16 x 16

     1.  1x1        | 1x1        [ -2 0 ; -2 0 ]           1.
     2.  2x2        | 2x2        [ -1 1 ; -1 1 ]  32 B       {1.414}
     3.  3x3        | 1x1        [  0 0 ;  0 0 ]  72 B
     4.  1x1        | 3x3        [  0 2 ;  0 2 ]           1.  {1.732}
     5.  2x2        | 2x2        [  1 1 ;  1 1 ]  32 B       {1.414}
     6.  1x1        | 1x1        [  2 0 ;  2 0 ]           1.

This is the normal contraction of the identity tensors. The result acts on 16-dimensional space of two spinful

fermionic sites.

What happens if we replace one sector of A with all-zero reduced matrix elements?

A.data{1} = zeros(size(A.data{1}));
contract(A,'!2*',{M1,'!1',{M2,'!1',A}})

ans = 
     Q:  5x [2 2]  having 'A,SU2',   { A01, A01* }
  data:  2-D double (672 bytes)      9 x 9 => 15 x 15

     1.  2x2        | 2x2        [ -1 1 ; -1 1 ]  32 B       {1.414}
     2.  3x3        | 1x1        [  0 0 ;  0 0 ]  72 B
     3.  1x1        | 3x3        [  0 2 ;  0 2 ]           1.  {1.732}
     4.  2x2        | 2x2        [  1 1 ;  1 1 ]  32 B       {1.414}
     5.  1x1        | 1x1        [  2 0 ;  2 0 ]           1.

Then we have the sector [-2 0] is missing, and the result acts on 15-dimensional space.

It is an intended feature rather than a bug. When contract tensors over the tensor network, the all-zero sectors

in the constituent tensors do not contribute to the result. So the truncation of such all-zero sectors yields better

computational efficiency.

However, when we consider the Hamiltonian in effective basis, the Hamiltonian may have the sectors of all

zero matrix elements, and such sectors should be kept. All the energy eigenvalues, whether zero or finite, have

meaning! For this, we should enforce to keep all-zero sectors. One trick is to add the identity operator, multiplied

by very small number smaller than double precision (e.g., ), to the Hamiltonian. Such small number should

not change the physical results, but prevents unwanted truncation.

Eigendecomposition

Let's construct the hopping term  acting on two spinful fermionic sites.

% for site s00
F1 = F; F1.info.itags = {'s00','s00*','op*'}; 
E1 = I.E; E1.info.itags = {'s00','s00*'};
% for site s01
F2 = F; F2.info.itags = {'s01','s01*','op*'};
E2 = I.E; E2.info.itags = {'s01','s01*'};
Z2 = Z; Z2.info.itags = {'s01','s01*'};
A = getIdentity(E1,2,E2,2,'A01*',[1 3 2]);

H = contract(A,'!2*',{F1,'!1',{F2,'!2*',{Z2,'!1',A}}}) + ...
    contract(A,'!2*',{F1,'!2*',{Z2,'!1',{F2,'!1',A}}}) + ...
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    getIdentity(A,2)*1e-40;

The first line of defining H means , and the second line means its Hermitian conjugate. And in the

third line, we added the identity multiplied by a small number, to let H have all the sectors (that amount to 16

dimensional space).

celldisp(H.data)

 
ans{1} =
 
   1.0000e-40

 
 
ans{2} =
 
    0.0000    1.0000
    1.0000    0.0000

 
 
ans{3} =
 
    0.0000   -1.4142         0
   -1.4142    0.0000   -1.4142
         0   -1.4142    0.0000

 
 
ans{4} =
 
   1.0000e-40

 
 
ans{5} =
 
    0.0000   -1.0000
   -1.0000    0.0000

 
 
ans{6} =
 
   1.0000e-40

 

The eigenvalues and eigenvectors of H can be obtained by eig which is the wrap-up of eigQS.

[V,D] = eig(H)

V = 
     Q:  6x [2 2]  having 'A,SU2',   { A01, A01* }
  data:  2-D double (784 bytes)      10 x 10 => 16 x 16

     1.  1x1        | 1x1        [ -2 0 ; -2 0 ]           1.
     2.  2x2        | 2x2        [ -1 1 ; -1 1 ]  32 B       {1.414}
     3.  3x3        | 1x1        [  0 0 ;  0 0 ]  72 B
     4.  1x1        | 3x3        [  0 2 ;  0 2 ]           1.  {1.732}
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     5.  2x2        | 2x2        [  1 1 ;  1 1 ]  32 B       {1.414}
     6.  1x1        | 1x1        [  2 0 ;  2 0 ]           1.

D = 
     Q:  6x [2 2]  having 'A,SU2',   { A01, A01* }
  data:  2-D double (704 bytes)      6 x 10 => 10 x 16

     1.  1x1        | 1x1        [ -2 0 ; -2 0 ]       1e-40
     2.  1x2        | 2x2        [ -1 1 ; -1 1 ]  16 B       {1.414}
     3.  1x3        | 1x1        [  0 0 ;  0 0 ]  24 B
     4.  1x1        | 3x3        [  0 2 ;  0 2 ]       1e-40  {1.732}
     5.  1x2        | 2x2        [  1 1 ;  1 1 ]  16 B       {1.414}
     6.  1x1        | 1x1        [  2 0 ;  2 0 ]       1e-40

V and D are QSpace objects. Each data of V is the unitary matrix whose columns are eigenvectors:

celldisp(V.data)

 
ans{1} =
 
     1

 
 
ans{2} =
 
   -0.7071    0.7071
    0.7071    0.7071

 
 
ans{3} =
 
   -0.5000   -0.7071   -0.5000
   -0.7071   -0.0000    0.7071
   -0.5000    0.7071   -0.5000

 
 
ans{4} =
 
     1

 
 
ans{5} =
 
   -0.7071   -0.7071
   -0.7071    0.7071

 
 
ans{6} =
 
     1

 

We can check the unitarity of V by

V2 = contract(V,'!2*',V);
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isequal(V2,getIdentity(A,2))

ans = logical
   0

Each data of D is the row vector of eigenvalues:

celldisp(D.data)

 
ans{1} =
 
   1.0000e-40

 
 
ans{2} =
 
   -1.0000    1.0000

 
 
ans{3} =
 
   -2.0000   -0.0000    2.0000

 
 
ans{4} =
 
   1.0000e-40

 
 
ans{5} =
 
   -1.0000    1.0000

 
 
ans{6} =
 
   1.0000e-40

 

(Quick exercise: Explain the eigenvalues.)

To make D as an operator representing a diagonal matrix,

D2 = diag(D)

D2 = 
     Q:  6x [2 2]  having 'A,SU2',   { A01, A01* }
  data:  2-D double (784 bytes)      10 x 10 => 16 x 16

     1.  1x1        | 1x1        [ -2 0 ; -2 0 ]       1e-40
     2.  2x2        | 2x2        [ -1 1 ; -1 1 ]  32 B       {1.414}
     3.  3x3        | 1x1        [  0 0 ;  0 0 ]  72 B
     4.  1x1        | 3x3        [  0 2 ;  0 2 ]       1e-40  {1.732}
     5.  2x2        | 2x2        [  1 1 ;  1 1 ]  32 B       {1.414}
     6.  1x1        | 1x1        [  2 0 ;  2 0 ]       1e-40
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celldisp(D2.data)

 
ans{1} =
 
   1.0000e-40

 
 
ans{2} =
 
   -1.0000         0
         0    1.0000

 
 
ans{3} =
 
   -2.0000         0         0
         0   -0.0000         0
         0         0    2.0000

 
 
ans{4} =
 
   1.0000e-40

 
 
ans{5} =
 
   -1.0000         0
         0    1.0000

 
 
ans{6} =
 
   1.0000e-40

 

One may also directly use the original MEX function eigQS.

[E,Ieig] = eigQS(H);

Note that the syntax is a bit different from the wrap-up eig. E is two-column matrix whose first column is the

energy eigenvalues (sorted in ascending order) and second column indicates the multiplet dimensions (i.e.,

degeneracy due to non-Abelian symmetry) associated with the eigenvalues. When only the Abelian symmetries

are used, E becomes a column vector, without having the second column for the multiplet dimensions.

E

E = 10×2
   -2.0000    1.0000
   -1.0000    2.0000
   -1.0000    2.0000
   -0.0000    1.0000
    0.0000    1.0000
    0.0000    1.0000
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    0.0000    3.0000
    1.0000    2.0000
    1.0000    2.0000
    2.0000    1.0000

And Inrg is the struct that contains more result of the eigendecomposition, including the eigenvectors (.AK and

.AT) and eigenvalues (.EK and .ET).

Ieig

Ieig = struct with fields:
        AK: [1×1 struct]
        AD: [1×1 struct]
        EK: [1×1 struct]
        ED: [1×1 struct]
        DB: [6×2 double]
        NK: 10
    Etrunc: 0

Becasue of the MATLAB policy, the direct result of MEX functions should be of MATLAB built-in types, while the

QSpace is the user-defined data type. Here .AK, .AT, .EK, and .ET are struct variables that are compatible

with QSpace. So we wrap them up as QSpace objects:

Ieig.EK = QSpace(Ieig.EK);
Ieig.AK = QSpace(Ieig.AK);
Ieig.EK

ans = 
     Q:  6x [2 2]  having 'A,SU2',   { A01, A01* }
  data:  2-D double (704 bytes)      6 x 10 => 10 x 16

     1.  1x1        | 1x1        [ -2 0 ; -2 0 ]       1e-40
     2.  1x2        | 2x2        [ -1 1 ; -1 1 ]  16 B       {1.414}
     3.  1x3        | 1x1        [  0 0 ;  0 0 ]  24 B
     4.  1x1        | 3x3        [  0 2 ;  0 2 ]       1e-40  {1.732}
     5.  1x2        | 2x2        [  1 1 ;  1 1 ]  16 B       {1.414}
     6.  1x1        | 1x1        [  2 0 ;  2 0 ]       1e-40

Ieig.AK

ans = 
     Q:  6x [2 2]  having 'A,SU2',   { A01, A01* }
  data:  2-D double (784 bytes)      10 x 10 => 16 x 16

     1.  1x1        | 1x1        [ -2 0 ; -2 0 ]           1.
     2.  2x2        | 2x2        [ -1 1 ; -1 1 ]  32 B       {1.414}
     3.  3x3        | 1x1        [  0 0 ;  0 0 ]  72 B
     4.  1x1        | 3x3        [  0 2 ;  0 2 ]           1.  {1.732}
     5.  2x2        | 2x2        [  1 1 ;  1 1 ]  32 B       {1.414}
     6.  1x1        | 1x1        [  2 0 ;  2 0 ]           1.

We can set several options for eigQS, such as Nkeep (number of multiplets to be kept) and Etrunc

(threshold energy such that the energy eigenvalues below the value are to be kept). For details, type: eigQS

-?

Singular value decomposition
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We can perform the singular value decomposition (SVD) of QSpace objects, by using MEX function svdQS. The

first input to svdQS is a QSpace object whose legs are all in. Indeed, this notion of decomposing all-in tensor is

consistent with the diagrammatic expresssion of the Schmidt decomposition.

And the second input is the leg indices. The corresponding legs are to be the legs of the third output Vd for right

singular vectors. When non-Abelian symmetry is used, it is allowed to choose only one or  indices, where r

is the rank of the first input. To "split off" different number of legs (to be associated with Vd), we need to fuse the

legs by using the isometry generated by getIdentity; then perform the SVD; then split the legs by appling

the conjugate of the iseometry used to fuse the legs.

For example, consider an isometry:

[S,I] = getLocalSpace('Spin',1/2);
E1 = I.E; E1.info.itags = {'s00','s00*'};
E2 = I.E; E2.info.itags = {'s01','s01*'};
A = getIdentity(E1,2,E2,2,'A01*',[1 3 2]);

We need to flip the second leg to perform the SVD.

I0 = getIdentity(A,2,'-0');
AI = contract(A,'!1',I0,'!2',[1 3 2])

AI = 
     Q:  2x [1 1 1]  having 'SU2',   { s00, A01, s01 }
  data:  3-D double (224 bytes)      1 x 2 x 1 => 2 x 4 x 2

     1.  1x1x1      | 2x1x2      [ 1 ; 0 ; 1 ]           1.
     2.  1x1x1      | 2x3x2      [ 1 ; 2 ; 1 ]       1.732

Then use the svdQS.

[U,S,Vd] = svdQS(AI,1);

As mentioned above, the direct outputs from MEX functions are in the form of struct variables, not as QSpace

objects. So we need to wrap them up.

U = QSpace(U)

U = 
     Q:  2x [1 1 1]  having 'SU2',   { s00*, A01, s01 }
  data:  3-D double (224 bytes)      1 x 2 x 1 => 2 x 4 x 2

     1.  1x1x1      | 2x1x2      [ 1 ; 0 ; 1 ]      0.7071
     2.  1x1x1      | 2x3x2      [ 1 ; 2 ; 1 ]       1.225

S = QSpace(S)

S = 
     Q:  1x [1 1]  having 'SU2',   { s00, s00 }
  data:  2-D double (112 bytes)      1 x 1 => 2 x 2

     1.  1x1        | 2x2        [ 1 ; 1 ]      -1.414  {1.414}

Vd = QSpace(Vd)

Vd = 
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     Q:  1x [1 1]  having 'SU2',   { s00*, s00 }
  data:  2-D double (112 bytes)      1 x 1 => 2 x 2

     1.  1x1        | 2x2        [ 1 ; 1 ]           1.  {1.414}

The first leg (incoming) of AI is associated with the second leg (incoming) of Vd. And the singular value tensor

S is all-in.

Normalization convention
The QSpace library has different conventions of normalizing the Clebsch-Gordan coefficients for rank-2 tensors

(such as Z and I.E) and for higher-rank tensors (such as F and S).

For rank-2 tensors, the Clebsch-Gordan coefficients are normalized so that the reduced matrix elements have

immediately relevant values. The elements of the tensor D (obtained after eig) for the energy eigenvalues are

indeed energy eigenvalues.

celldisp(D.data)

 
ans{1} =
 
   1.0000e-40

 
 
ans{2} =
 
   -1.0000    1.0000

 
 
ans{3} =
 
   -2.0000   -0.0000    2.0000

 
 
ans{4} =
 
   1.0000e-40

 
 
ans{5} =
 
   -1.0000    1.0000

 
 
ans{6} =
 
   1.0000e-40

 

Also each cell .data{..} of identity operator I.E contains the identity matrices themselves.

celldisp(I.E.data)
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ans{1} =
 
    1.0000

 

On the other hand, for higher-rank tensors, the Clebsch-Gordan coefficents are normalized so that the

contraction of a tensor and its Hermitian conjugate becomes unity, when the reduced matrix elements are unity.

For example, consider a rank-3 tensor which is the subspace projection of F,

O1 = getsub(F,2)

O1 = 
     Q:  1x [2 2 2]  having 'A,SU2',   operator,   { , *, * }
  data:  3-D double (112 bytes)      1 x 1 x 1 => 2 x 1 x 2

     1.  1x1x1      | 2x1x2      [  0 1 ;  1 0 ; -1 1 ]      -1.414

O1.data{1} = 1; % make the reduced matrix to be trivial 1

The contraction of O1 and its Hermitian conjugate, with all the legs contracted, is equal to the squared norm of

the Clebsch-Gordan coefficents, since the reduced matrix is set as trivial 1.

contract(O1,'1,2,3',O1,'1,2,3;*')

ans = 
     Q:  []  having 'A,SU2'
  data:  0-D double (112 bytes)      

     1.  1x1 [  ]           1.

On the other hand, due to the different normalization convention of rank-2 tensors, the contraction of two

identity operators, with all the legs contracted, becomes the Hilbert space dimension.

contract(I.E,'1,2',I.E,'1,2;*')

ans = 
     Q:  []  having 'SU2'
  data:  0-D double (112 bytes)      

     1.  1x1 [  ]           2.

Outer multiplicity
When non-Abelian symmetry is used, it is possible that there are multiple sectors with the same quantum

numbers, while different sectors are indeed associated with different (orthogonal) Clebsch-Gordan coefficients.

It is called outer multiplicity. One simple example is:

[S,I] = getLocalSpace('Spin',1/2);
A1 = getIdentity(I.E,2,I.E,2);
A2 = getIdentity(A1,3,I.E,2);
A12 = contract(A1,'3',A2,'1')

A12 = 
     Q:  3x [1 1 1 1]  having 'SU2',   { , , , * }
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  data:  4-D double (352 bytes)      1 x 1 x 1 x 3 => 2 x 2 x 2 x 8

     1.  1x1x1x2      | 2x2x2x2      [ 1 ; 1 ; 1 ; 1 ]  16 B
     2.  1x1x1x2      | 2x2x2x2      [ 1 ; 1 ; 1 ; 1 ]  16 B
     3.  1x1x1x1      | 2x2x2x4      [ 1 ; 1 ; 1 ; 3 ]           2.

The first and second sectors have the same quantum numbers! But, of course, they are orthogonal. Consider

their parts:

A12a = getsub(A12,1);
A12a.data{1} = 1;
A12b = getsub(A12,2);
A12b.data{1} = 1;

Here we replaced the reduced matrix elements (.data{..}) with ones, to focus on the Clebsch-Gordan

coefficients. Then their overlap, i.e., contraction between A12a and the conjugate of A12b) vanishes.

contract(A12a,'1234',A12b,'1234*')

ans =  (empty QSpace)

On the other hand, three incoming legs (from the first to the third) look identical, so it seems that the tensor

remains the same after permuting the incoming legs. But it's not! The overlap with A12a and the permutation

of the first and third legs of A12a is not unity. It means that the Clebsch-Gordan coefficients can change by

permuting legs.

contract(A12a,'1234',A12a,'3214*') % note the 4th input

ans = 
     Q:  []  having 'SU2'
  data:  0-D double (112 bytes)      

     1.  1x1 [  ]         0.5

Why? Let's draw the tensor network diagram for the first and second sectors of A12.

Attached to the legs are spin quantum numbers. Fusing two  (two incoming legs of A1) lead to two

values of spin  (outgoing leg of A1). These two values can result in  (outgoing leg of A2) by

being fused with one  (bottom incoming leg of A2). The outer multiplicity of A12 reflects this two different

ways of having four legs of . In this diagram, it is clear to see that the left leg of A1 and the bottom leg of

A2 are not equivalent.

Exercise (a): Complete set of operators
In this exercise, we construct the complete set of irreducible operators (IROPs) that act on one or two sites,

respect the SU(2) spin symmetry, and are linearly independent. For example, for one spin-1/2 site, the spin
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operator S and the identity operator I.E, generated by [S,I] = getLocalSpace('Spin',1/2), form such

complete set.

1. Do other operators, linearly independent from S and I.E, exist for the one spin-1/2 site? Explain your
answer.

2. Identify the complete set of IROPs, which respect the SU(2) spin symmetry, for a spinful fermion site.

Provide the analytic expression for those operators.

3. Identify the complete set of IROPs, which respect the SU(2) spin symmetry, for two spin-1 sites.

Among those IROPs, identify two-site interaction terms that act onto these two sites and Hermitian.

An example of the two-site interaction term is the Heisenberg interaction . Provide the analytic

expression for those operators.

(Hint: QSpace library provides a systematic way of generating such operators, by using getIdentity and

getsub.)

Exercise (b): Swap operation
This exercise continues from Exercise (a). Consider the swap operation on two spin-1 sites. This operation

literally transfers state from one site to the other:

Represent the swap operation in terms of two-site interactions identified in Exercise (a) above.
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