
Applying MPO onto MPS
Author: Seung-Sup Lee

We demonstrate that the application of matrix product operator (MPO) onto a matrix product state (MPS) results

in another MPS. In this tutorial, we consider an MPO representation of the Hamiltonian and its ground state(s)

as the MPO and the MPS, respectively.

To start with, we consider the spin-1/2 Heisenberg model on a short chain,

The chain length  is chosen to be short so that we can obtain the full Hamiltonian and the exact ground

state by using iterative diagonalization. Here at all iterations before the last iteration, we do not rotate the basis

into the energy eigenbasis and do not truncate the Hilbert space. It is necessary to compare the Hamiltonian

constructed within iterative diagonalization (represented by a matrix Hnow below) with the MPO form of the

Hamiltonian (to be obtained in the next section).

clear

N = 6; % chain length
M = cell(1,N); % MPS

[S,I] = getLocalSpace('Spin',1/2);

H0 = I*0; % Hamiltonian for only the 1st site
M{1} = getIdentity(1,2,I,2); % 1st leg is dummy leg (vacuum)

for itN = (1:N)
    if itN == 1
        Hnow = H0;
        Anow = M{1};
    else
        % % add new site
        Anow = getIdentity(Hprev,2,I,2);
        Hnow = updateLeft(Hprev,2,Anow,[],[],Anow);
        % update the Hamiltonian up to the last sites
        % to the enlarged Hilbert space
        
        % % spin-spin interaction
        % Hermitian conjugate of the spin operator at
        % the current site
        Sn = permute(conj(S),[3 2 1]);
        HSS = updateLeft(Sprev,3,Anow,Sn,3,Anow);
        Hnow = Hnow+HSS;
    end
    
    if itN < N % no rotation, no truncation
        M{itN} = Anow;
        Hprev = Hnow;
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        % spin operator at the current site; to be used for 
        % generating the coupling term at the next iteration
        Sprev = updateLeft([],[],M{itN},S,3,M{itN});
    else
        [V,D] = eig((Hnow+Hnow')/2);
        [E_GS,minid] = min(diag(D));
        % select only the ground state
        M{itN} = contract(Anow,3,3,V(:,minid),2,1);
    end
    
    disptime(['#',sprintf('%02i/%02i',[itN,N]),' : ', ...
        'NK=',sprintf('%i/%i',[size(M{itN},3),size(Hnow,2)])]);
end

21-04-22 15:16:34 | #01/06 : NK=2/2
21-04-22 15:16:34 | #02/06 : NK=4/4
21-04-22 15:16:34 | #03/06 : NK=8/8
21-04-22 15:16:34 | #04/06 : NK=16/16
21-04-22 15:16:34 | #05/06 : NK=32/32
21-04-22 15:16:34 | #06/06 : NK=1/64

The ground-state energy is:

E_GS

E_GS = -2.4936

Currently, M is in a left-canonical form. By bringing it into a right-canonical form, the size of the constituent

tensors can be decreased.

M

M = 1×6 cell

1 2 3 4 5 6

1 1×2×2 double 2×2×4 double 4×2×8 double 8×2×16 double 16×2×32 dou... 32×2 double

M = canonForm(M,0) % right-canonical form

M = 1×6 cell

1 2 3 4 5 6

1 1×2×2 double 2×2×4 double 4×2×8 double 8×2×4 double 4×2×2 double [-1,0;0,...

MPO representation of Heisenberg chain Hamiltonian
We construct the MPO representation of the chain Hamiltonian, following the recipe given in a lecture. The MPO

consists of the same tensor, called bulk tensor, except for the first and the last sites. A bulk tensor is rank-4,

and its legs are as left-bottom-right-top. The bottom (top) leg is to be contracted with the second leg of bra (ket)

tensor.

Let's first generate a bulk tensor. 

% bulk tensor for each chain site
Hloc = cell(5,5);

2



Hloc(:) = {zeros(size(I))};
Hloc{1,1} = I;
for ito = (1:size(S,2)) % different components of spin operators
    Hloc{ito+1,1} = squeeze(S(:,ito,:));
    Hloc{end,ito+1} = squeeze(S(:,ito,:))';
end
Hloc{end,end} = I;
Hloc = cell2mat(reshape(Hloc,[1 1 size(Hloc,1) size(Hloc,2)]));
Hloc = permute(Hloc,[3 1 4 2]); % leg order: left-bottom-right-top

For the tensors at the first and the last sites, we project the bulk tensor onto a specific index of its left and right

legs, respectively. So the left and right legs, respectively, become dummy legs with singleton dimension.

% MPO for the full chain
Hs = cell(1,N);
Hs(:) = {Hloc};
Hs{1} = Hs{1}(end,:,:,:); % choose the last index of the left leg
Hs{end} = Hs{end}(:,:,1,:); % choose the first index of the right leg

The indices are chosen such that the pair of spin operators (which make up the interaction term) are complete,

without unpaired operators remaining.

To check whether the MPO construction is right, we compare the MPO and the Hamiltonian from iterative

diagonalization (represented by Hnow) We first contract the tensors of Hs to make a high-rank tensor acting

onto all the chain sites. And we permute and reshape the high-rank tensor into a big matrix, which can be

directly compared with Hnow.

Hs_tot = permute(Hs{1},[1 2 4 3]); % leg order: left-bottom-top-right
for itN = (2:N)
    Hs_tot = contract(Hs_tot,2*itN,2*itN,permute(Hs{itN},[1 2 4 3]),4,1);
end
Hs_tot = permute(Hs_tot,[(2:2:2*N) (3:2:2*N+1) 1 2*N+2]);
% permute singleton dimensions (= dummy legs) to the end
Hs_tot = reshape(Hs_tot,(size(I,1)^N)*[1 1]);

The two forms of the Hamiltonian are equivalent.

max(abs(Hs_tot(:)-Hnow(:)))

ans = 0

Application of MPO onto MPS
We apply the MPO representation of Hamiltonian H (represented by a cell array Hs) onto the ground state 

(by a cell array M). The tensors at each site, Hs{n} and M{n}, are contracted, and their horizontal legs are

merged by using isometries. The result is a rank-3 tensor HM{n}, which constitutes a MPS form of .
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HM = cell(1,N);
for itN = (1:N)
    HM{itN} = contract(Hs{itN},4,4,M{itN},3,2);
    % leg order: Hleft-Hbottom-Hright-Mleft-Mright
    
    % isometry to merge left legs
    if itN == 1
        Aleft = getIdentity(HM{itN},1,HM{itN},4);
    else
        % use Aright from the previous iteration, 
        % to be a valid insertion of identity
        Aleft = conj(Aright);
    end
    
    % isometry to merge right legs
    Aright = getIdentity(HM{itN},3,HM{itN},5);
    
    % contract isometries
    HM{itN} = contract(Aleft,3,[1 2],HM{itN},5,[1 4]);
    % leg order: left-Hbottom-Hright-Mright
    HM{itN} = contract(HM{itN},4,[3 4],Aright,3,[1 2]);
end

As shown in the above tensor diagram, the bond dimensions have increased.

HM

HM = 1×6 cell

1 2 3 4 5 6

1 1×2×10 double 10×2×20 dou... 20×2×40 dou... 40×2×20 dou... 20×2×10 dou... 10×2 double

The bond dimensions in the MPS form of  can be compressed by performing a "round trip" of bringing into

canonical forms; first into left-canonical, then into right-canonical.

[HM,HMnorm] = canonForm(HM,N) % left-canonical

HM = 1×6 cell

1 2 3 4 5 6

1 1×2×2 double 2×2×4 double 4×2×8 double 8×2×16 double 16×2×10 dou... 10×2 double
HMnorm = 2.4936

HM = canonForm(HM,0) % here the second output should be 1

HM = 1×6 cell
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1 2 3 4 5 6

1 1×2×2 double 2×2×4 double 4×2×8 double 8×2×4 double 4×2×2 double [-1,0;0,1]

Now, the tensors have the same sizes as those in M.

M

M = 1×6 cell

1 2 3 4 5 6

1 1×2×2 double 2×2×4 double 4×2×8 double 8×2×4 double 4×2×2 double [-1,0;0,...

The value of the norm HMnorm (which means ) is equal to the absolute value of the ground-state energy

(represented by E_GS).

HMnorm - abs(E_GS) % zero up to numerical noise

ans = 1.7764e-15

For later purpose, we let the first tensor HM{1} absorb HMnorm.

HM{1} = HM{1}*HMnorm;

We can also check that  gives the ground-state energy, by contracting HM and M.

MHM = updateLeft([],[],M{1},[],[],HM{1});
for itN = (2:N)
    MHM = updateLeft(MHM,2,M{itN},[],[],HM{itN});
end
MHM - E_GS % zero up to numerical noise

ans = -3.1086e-15

Here we know that M represents the ground state, since the Hamiltonian can be exactly diagonalized, thank to

small system size. For general systems, however, there is no straightforward way to verify whether a given state

 is the true ground state of the system, not being a local mimima.

Still, we can verify whether  is an eigenstate of the Hamiltonian H by confiming .

The first term  can be computed as the square of MHM and the second term  as the squared

norm . We see that the equality is satisfied, meaning that  is an eigenstate.

MHM^2 - HMnorm^2

ans = 7.1054e-15

Exercise (a): MPO representation of the AKLT Hamiltonian
We have studied the AKLT states in the previous tutorials. The AKLT states are the ground states of the AKLT

model, which is a chain of spin-1's that interact via nearest-neighbor interactions,
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The first term on the right-hand side is the Heisenberg interaction. The second term is a biquadratic term that

has a form of the squared Heisenberg interaction. We consider an open boundary condition.

(i) Construct a bulk tensor of an MPO representation of the AKLT model Hamiltonian. The tensors of the MPO

at the first and the last sites can be obtained in the same way as above, by projecting onto specific indices.

(ii) Check whether your construction of the MPO is correct, by comparing with the Hamiltonian from iterative

diagonalization of a short chain, e.g., .

Exercise (b): Confirm the AKLT states are the eigenstates of the AKLT
Hamiltonian
In a previous tutorial, we have learned that there are four AKLT states  ( ) in case of the open

boundary condition. For all these AKLT states , (i) compute the expectation values 

and (ii) confirm . For this exercise, consider a long chain of length .
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