
SVD Example: Image compression
Author: Seung-Sup Lee

We will provide a visual understanding of how the SVD can be used to compress large matrices. First load

a sample image data (Frauenkirche and Neues Rathaus in Marienplatz; © Thomas Wolf, www.foto-tw.de;

retrieved from https://commons.wikimedia.org/wiki/File:Stadtbild_M%C3%BCnchen.jpg).

clear

M = imread('Marienplatz.jpg'); % Read image data from a picture

When imread does not work (e.g., for Octave), simply load it from .mat file:

load('Marienplatz.mat');

To see the information of variables, type:

whos M

 Name Size Bytes Class Attributes

 M 3285x4861 15968385 uint8

If you use graphic interface, just look the workspace panel which is usually on the upper-right corner of the

MATLAB main window. We see that M is 3285 4861 matrix of uint8 type. uint8 is unsigned integer each

occupying 8 bit (= 1 byte) of memory. Therefore, M is about 15.2 MB!

Visualization of matrix
MATLAB provides several functions to visualize matrices.

figure; % open new figure window
imshow(M); % display image with matrix of uint8 type (NOT double).

1

https://www.theorie.physik.uni-muenchen.de/lsvondelft/members/sci_mem/seung_sup-lee/index.html
http://www.foto-tw.de/
https://commons.wikimedia.org/wiki/File:Stadtbild_M%C3%BCnchen.jpg

imshow does not work for double type variables (which are generally used in MATLAB calculations). So for

general purpooses, use imagesc as below.

figure;
imagesc(M); % display image with axes.
colormap(gray); % set colormap as gray, since the picture is black-and-white.

2

Note that the height-to-width ratio of pictures by imshow is the same as the original picture, but the ratio of

pictures by imagesc is fitted to the figure window size.

SVD of picture data
To use the SVD, we need to convert M to double type variable.

M2 = double(M); % convert data type: uint8 -> double
[U,S,V] = svd(M2); % singular value decomposition

To see the distribution of the singular values, we plot them.

% The magnitude of the singluar values decays exponentially.
figure;
plot(diag(S),'LineWidth',1); % plot diagonal elements of S.
set(gca,'LineWidth',1,'FontSize',13)
title('Singluar values'); % add title
ylabel('Magnitude'); % add y-axis label
grid on; % turn on grid line

3

% To better see the exponential decay, plot in log-linear scale
figure;
semilogy(diag(S),'LineWidth',1); % plot diagonal elements of S.
set(gca,'LineWidth',1,'FontSize',13)
title('Singluar values'); % add title
ylabel('Magnitude'); % add y-axis label
grid on; % turn on grid line

4

% plot in log-log scale
figure;
loglog(diag(S),'LineWidth',1); % plot diagonal elements of S.
set(gca,'LineWidth',1,'FontSize',13)
title('Singluar values'); % add title
ylabel('Magnitude'); % add y-axis label
grid on; % turn on grid line

5

Reconstruction of picture
Now we reconstruct picture from the SVD result of M. It is clear that U*S*V' will return the same matrix as M

(up to double precision 1e-16). But what if we use only part of U, S, and V? Based on the exponential decay

of the singular values, we can think of an approach that keeps only some of the largest singular values and the

corresponding singular vectors.

Let's compare how pictures will look like with different number of kept singular values.

Nkeep = [10,30,100,300]; % different number of singular values to keep

Ms = cell(numel(Nkeep),1); % cell array to contain matrices

for it = (1:numel(Nkeep))
 Ms{it} = U(:,1:Nkeep(it))*S(1:Nkeep(it),1:Nkeep(it))*V(:,1:Nkeep(it))';

 figure;
 imagesc(Ms{it});
 colormap(gray);
 set(gca,'FontSize',13)
 title([sprintf('%i',Nkeep(it)),' singluar values are kept']);
end

6

7

Only with 30 singular values, the rough shapes of Frauenkirche and Neues Rathaus are already visible. With

300 singular values (about 9% of total singular values), we can reproduce the overall features of the original

8

high-resoultion picture nicely! Of course, if you zoom in, you will realize that sharp details, such as the steeple of

Neues Rathaus, remain noisy somehow.

Exercise (a): Understanding singular vectors
From the demonstration above, we have found that the singular vectors for the largest singular values (e.g.

U(:,(1:10)) and V(:,(1:10))) contribute more to the original matrix M than the singular vectors for the

smallest singular values (e.g. U(:,(end-9:end)) and V(:,(end-9:end))). Can you find the qualitative

differences between the vectors for the largest singular values and the vectors for the smallest singular values?

Use fft (Fast Fourier transform) for analyzing the vectors. The exercise is designed to make students familiar

with reading and understanding MATLAB documentation. If you didn't read the documentation for fft, please

read it through to the end.

9

