
Tensor contraction
Author: Seung-Sup Lee

Here we will explain how to contract tensors in MATLAB. Consider three tensors A, B, and C:

The legs with the same indices will be contracted. In this tutorial, we will treat the tensors as mere numerical

arrays in which the directions of tensor legs are not important. Thus we will omit the arrows for the rest of this

tutorial. Of course, when the tensors are in physical context (e.g., bras, kets) or non-Abelian symmetries are

exploited (to be covered later in the lecture course), the direction of legs does matter!

Initialization
Clear workspace (clear pre-existing variables to avoid any collision), and set the bond dimension D for tensors

as 10. Then generate rank-2 tensor A (of size D*D) and rank-3 tensors B and C (of size D*D*D) with random

elements.

clear

% bond dimensions
Da = 10; % alpha
Db = 12; % beta
Dc = 14; % gamma
Dd = 17; % delta
Dm = 20; % mu

A = rand(Dc,Dd); % tensor A(gamma,delta)
B = rand(Da,Dm,Dc); % tensor B(alpha,mu,gamma)
C = rand(Db,Dm,Dd); % tensor C(beta,mu,delta)

Initiate timers for real/CPU tiume.

tobj = tic2;

Contract B and C
Let's contract B and C first. Reshape rank-3 tensor B as matrix, by permuting leg indices and by reshaping, as a

diagram below:

1

https://www.theorie.physik.uni-muenchen.de/lsvondelft/members/sci_mem/seung_sup-lee/index.html

Here thick leg means that the associated bond dimension is big, since two legs are combined by reshape.

B1 = permute(B,[1,3,2]); % B(alpha,mu,gamma) -> B(alpha,gamma,mu)
B1 = reshape(B1,[Da*Dc,Dm]); % B(alpha,gamma,mu) -> B(alpha*gamma,mu)

Treat tensor C similarly.

C1 = permute(C,[2,1,3]); % C(beta,mu,delta) -> C(mu,beta,delta)
C1 = reshape(C1,[Dm,Db*Dd]); % C(mu,beta,delta) -> C(mu;beta*delta)

The treated B and C (or equivalently B1 and C1) are matrices (i.e. rank-2 tensors), so the legs can be contracted

via matrix multiplication. As mentioned in the previous tutorial, MATLAB is very efficient when it performs

(standard) linear algebra operations. Let's contract B1 and C1 via the legs , and seprate the combined legs

 and into four legs , as a diagram below.

BC = B1*C1;% \sum_{mu} B(alpha*gamma,mu) * C(mu,beta*delta)
 % = BC(alpha*gamma,beta,delta)
% BC(alpha*gamma,beta*delta) -> BC(alpha,gamma,beta,delta)
BC = reshape(BC,[Da,Dc,Db,Dd]);

Contract BC and A
Current tensor networks looks like:

Reshape BC as a matrix, as the diagram below:

2

% BC(alpha,gamma,beta,delta) -> BC(alpha,beta,gamma,delta)
BC = permute(BC,[1,3,2,4]);
% BC(alpha,beta,gamma,delta) -> BC(alpha*beta;gamma*delta)
BC = reshape(BC,[Da*Db,Dc*Dd]);

Then reshape tensor A as a vector, and multiply with BC. By reshaping ABC as rank-2 tensor, we have rank-2

tensor ABC.

A1 = A(:); % A(gamma,delta) -> A(gamma*delta)
% \sum_{gamma,delta} BC(alpha*beta,gamma*delta) * A(gamma*delta)
% = ABC(alpha,beta)
ABC1 = BC*A1;
ABC1 = reshape(ABC1,[Da,Db]);% ABC(alpha*beta) -> ABC(alpha,beta)

How much time has been taken?

toc2(tobj,'-v');

Elapsed time: 0.0314s, CPU time: 0.08s, Avg # of cores: 2.547

Usually CPU time lapse is several times larger than real time lapse. It shows that MATLAB automatically

parallelized computation.

Short remark: Why do we use matrix multiplication, instead of for-loops?
One may ask why we bother with reshaping and permuting tensors. So let's compare the computational

efficiency between two approaches. First, below is the part of the above code contracting B and C.

% % Scheme 1: Tensor contraction using matrix multiplication

3

tobj = tic2;

B1 = permute(B,[1,3,2]); % B(alpha,mu,gamma) -> B(alpha,gamma,mu)
B1 = reshape(B1,[Da*Dc,Dm]);% B(alpha,gamma,mu) -> B(alpha*gamma,mu)
C1 = permute(C,[2,1,3]); % C(beta,mu,delta) -> C(mu,beta,delta)
C1 = reshape(C1,[Dm,Db*Dd]);% C(mu,beta,delta) -> C(mu,beta*delta)
% \sum_{mu} B(alpha*gamma,mu) * C(mu,beta*delta)
% = BC(alpha*gamma,beta*delta)
BC = B1*C1;
% BC(alpha*gamma,beta*delta) -> BC(alpha,gamma,beta,delta)
BC = reshape(BC,[Da,Dc,Db,Dd]);

toc2(tobj,'-v');

Elapsed time: 0.01535s, CPU time: 0.02s, Avg # of cores: 1.303

Second, this is a contraction using for-loops.

% % Scheme 2: Tensor contraction using for-loops
tobj = tic2;

% create an 4D-array initialized with zeros
BC = zeros(Da,Dc,Db,Dd);
for it1 = (1:size(BC,1)) % alpha
 for it2 = (1:size(BC,2)) % gamma
 for it3 = (1:size(BC,3)) % beta
 for it4 = (1:size(BC,4)) % delta
 for it5 = (1:size(B,2)) % mu
 BC(it1,it2,it3,it4) = ...
 BC(it1,it2,it3,it4) + ...
 B(it1,it5,it2)*C(it3,it5,it4);
 end
 end
 end
 end
end

toc2(tobj,'-v');

Elapsed time: 2.162s, CPU time: 3.39s, Avg # of cores: 1.568

We see that the latter scheme takes much longer time (> 100 times)!

In MATLAB, matrix operation is much faster than for-loops, since MATLAB implements a state-of-the-art linear

algebra algorithm (which is, e.g., better parallelized). Try to avoid use for-loops for matrix or tensor operations

as possible!

Exercise (a): First contract A and C, and then contract AC and B
Try a different order of the tensor contraction. Contract A and C first, then contract B, as a diagram below.

4

Write a script which implements this way of tensor contraction, and compare the computational time (both real

time and CPU time). Which one is faster, by which factor?

5

