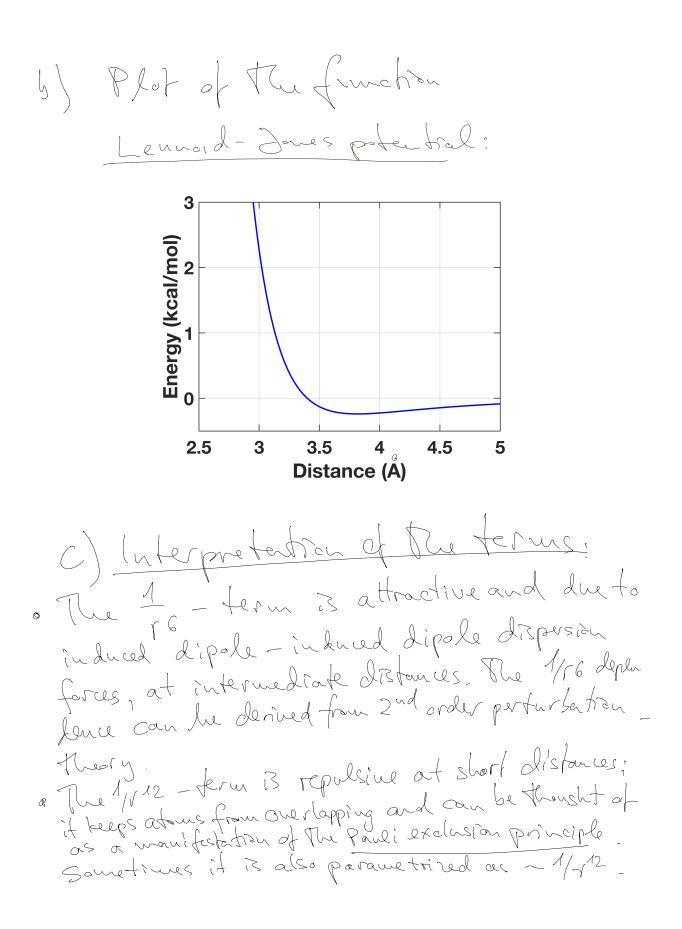
Brophysics of Recommercules SS 2021  
PROPSHETT SET 1  
(0 a) Volume of E. coli:  


$$V = \pi P^2 \cdot L = \pi (\frac{4}{2} / 6^6 m)^2 \cdot 2 \cdot 10^6 m$$
  
 $= 1.6 \cdot 10^{-18} m^3 \times 1/mm^3$   
 $\propto 1 gl$   
b)  $1 n\pi = \frac{10^{-3} \cdot 6 \cdot 10^{23} melecules}{1 gl}$   
 $= \frac{0.6 melecules}{1 gl}$   
 $\Rightarrow Pauguly 1 melecule pay E. coli cell.$   
 $1 m\pi = \frac{10^{-3} \cdot 6 \cdot 10^{23} melecules}{1 gl}$   
 $= \frac{10^{-3} \cdot 6 \cdot 10^{23} melecules}{1 gl}$   
 $\Rightarrow Pauguly 1 melecule pay E. coli cell.$   
 $1 m\pi = \frac{10^{-3} \cdot 6 \cdot 10^{23} melecules}{1 gl}$   
 $= \frac{0.000 molecules}{1 gl}$   
 $\Rightarrow Roughly 100 molecules per E. coli.
 $1 \pi = \frac{6.10^{23} melecules}{1 gl} = \frac{6.10^8 molecules}{1 gl}$   
 $\Rightarrow Roughly 10^9 melecules per E. coli.$$ 

c) Spacing on cubic Suffice: 
$$d = c^{-4/2}$$
  
 $InTI \implies d = \left(\frac{10^{-9} \cdot 6.10^{23}}{10^{-5} \text{ m}^3}\right)^{-4/3}$   
 $\approx 10^{-6} \text{ m} = 10^{-4/3}$   
 $ImTI \implies d = \left(\frac{10^{-3} \cdot 6.10^{23}}{10^{-3} \text{ m}^3}\right)^{-4/3}$   
 $\propto 10^{-6} \text{ mm}$   
 $ImTI \implies d = \left(\frac{-6 \cdot 10^{-23}}{10^{-3} \text{ m}^3}\right)^{-4/3} \approx 10^{-4} \text{ mm}$   
 $ITI \implies d = \left(\frac{-6 \cdot 10^{-23}}{10^{-3} \text{ m}^3}\right)^{-4/3} \approx 10^{-4} \text{ mm}$   
 $ITI \implies d = \left(\frac{-6 \cdot 10^{-23}}{10^{-3} \text{ m}^3}\right)^{-4/3} \approx 10^{-4} \text{ mm}$   
 $ITI \implies d = \left(\frac{-6 \cdot 10^{-23}}{10^{-3} \text{ m}^3}\right)^{-4/3} \approx 10^{-4} \text{ mm}$   
 $ITI \implies d = \left(\frac{-6 \cdot 10^{-2}}{10^{-3} \text{ m}^3}\right)^{-4/3} \approx 10^{-4} \text{ mm}$   
 $ITI \implies d = \left(\frac{-6 \cdot 10^{-2}}{10^{-3} \text{ m}^3}\right)^{-4/3} \approx 10^{-4} \text{ mm}$   
 $ITI \implies d = \left(\frac{-6 \cdot 10^{-2}}{10^{-3} \text{ m}^3}\right)^{-4/3} \approx 10^{-4} \text{ mm}$   
 $ITI \implies d = \left(\frac{-6 \cdot 10^{-2}}{10^{-3} \text{ m}^3}\right)^{-4/3} \approx 10^{-4} \text{ mm}$   
 $ITI \implies d = \left(\frac{-6 \cdot 10^{-2}}{10^{-3} \text{ m}^3}\right)^{-4/3} \approx 10^{-4} \text{ mm}$   
 $ITI \implies d = \left(\frac{-6 \cdot 10^{-2}}{10^{-3} \text{ m}^3}\right)^{-4/3} \approx 10^{-4} \text{ mm}$   
 $ITI \implies d = \left(\frac{-6 \cdot 10^{-2}}{10^{-3} \text{ m}^3}\right)^{-4/3} \approx 10^{-4} \text{ mm}$   
 $ITI \implies d = \left(\frac{-6 \cdot 10^{-2}}{10^{-3} \text{ m}^3}\right)^{-4/3} \approx 10^{-4} \text{ mm}$   
 $ITI \implies d = \left(\frac{-6 \cdot 10^{-2}}{10^{-3} \text{ m}^3}\right)^{-4/3} \approx 10^{-4} \text{ mm}$   
 $ITI \implies d = \left(\frac{-6 \cdot 10^{-2}}{10^{-5} \text{ m}^3}\right)^{-4/3} \approx 10^{-6} \text{ mm}^3$   
 $ITI \implies d = \left(\frac{-6 \cdot 10^{-2}}{10^{-5} \text{ m}^3}\right)^{-4/3} \approx 10^{-6} \text{ mm}^3$   
 $ITI \implies d = \left(\frac{-6 \cdot 10^{-2}}{10^{-5} \text{ m}^3}\right)^{-4/3} \approx 10^{-6} \text{ mm}^3$   
 $ITI \implies d = \left(\frac{-6 \cdot 10^{-2}}{10^{-5} \text{ m}^3}\right)^{-4/3} = 10^{-6} \text{ mm}^3$   
 $ITI \implies d = \left(\frac{-6 \cdot 10^{-2}}{10^{-5} \text{ m}^3}\right)^{-4/3} = 10^{-6} \text{ mm}^3$   
 $ITI \implies 10^{-6} \text{ mm}^3$   
 $ITI$ 

&) 30 mm (s corresponds to ~15 body legth World class human Swimmers Swim The 100 m freestyle in C / min (The current world record is just undes 475); Numan = 100 m 2 2 m 1 body length 475 2 5 2 o Great white shaths are ~ 5 m long and swim up to Zomph ~ 13 m/s >> Ushorh = 13<sup>m</sup>/s ~ 2.5 body length So E. coli outswim both humans and shaths, normalized to body size.

3 Van der work interaction with  
repulsive form:  

$$E(r) = 4\varepsilon \left[ \left( \frac{\sigma}{r} \right)^{12} - \left( \frac{\sigma}{r} \right)^{6} \right]$$
a) trinimum of the energy at  $r = r + \frac{1}{2}$   
 $\frac{12}{7} = \frac{1}{7} \varepsilon \left( -\frac{12}{7} \frac{\sigma^{12}}{7^{12}} + 6 \frac{\sigma^{6}}{7^{7}} \right)$   
 $\frac{12}{7} \frac{\sigma^{12}}{7^{12}} = 6 \frac{\sigma^{6}}{7^{7}}$   
 $2 \sigma^{6} = r^{6}$   
 $\frac{12}{7} \frac{\sigma^{12}}{7^{12}} = 2^{16} \sigma = 1.72 \sigma$   
Energy at minimum:  
 $E(r^{*}) = 4\varepsilon \left( \frac{\sigma^{12}}{2^{16} \sigma^{2}} - \frac{\sigma^{6}}{276 \sigma^{6}} \right)$   
 $= 4\varepsilon \left( \frac{1}{7} - \frac{1}{2} \right) = -\varepsilon$ 

