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Introduction

A theory behind neutrino masses has not yet been discovered. Soon after the existence of

a neutrino was postulated in 1930 by Pauli, the young scientist Ettore Majorana in 1937

offered an alternative way to describe mathematically those particles which are absolutely

neutral, i.e., those which are identical to their antiparticles [1]. An immediate phenomeno-

logical consequence that could distinguish them from the standard Dirac formulation was

found soon after. If neutrinos are Majorana particles then double beta decay may occur

without them having to be emitted [2]. This process known as neutrinoless double beta

decay (0νββ) has not yet been observed. Later on, Bruno Pontecorvo introduced the

concept of neutrino oscillations [3] in analogy with the oscillations of neutral kaons and

opened a new branch of physics. He understood that if neutrinos are massive they can

oscillate among different flavors. It is thanks to neutrino oscillation experiments that we

are able obtain information on neutrino masses and mixing, they have established that

neutrino masses are small but not zero. For a historical review see [4]. The Standard

Model (SM) [5] which describes massless neutrinos thus need to be updated. One natural

extension of the SM, in which neutrinos are necessarily massive is given by the Left-Right

models [6]. In these models a connection between the large scale of parity restoration and

the smallness of neutrino masses can be made [7]. This is nowadays known as the seesaw

mechanism [7, 8]. The left-right theories offer plenty of new phenomenology [9] but more

important, they offer the possibility to access to the high energy analogous of 0νββ [10].

The connection between the low energy and high energy manifestation of the same lepton

number violation was recently addressed in [11] and is the main subject developed in this

2



thesis.

Before starting with the details of the Left-Right model we comment on the general

features of the seesaw mechanism. One way to parametrize the masses of neutrinos is to

add to the SM Lagrangian the non-renormalizable Weinberg operator [12]:

L5 =
cαβ
2Λ

`αL`
β
Lφφ (1)

where `L is the lepton doublet and φ is the Higgs doublet, cαβ is a constant matrix in

the flavor space and Λ/c is the scale at which the neutrino masses are generated. The

neutrino masses will be generated spontaneously through the Higgs mechanism [13] once

the Higgs field takes a vacuum expectation value. The neutrino mass matrix will then be:

(Mν)αβ =
cαβv

2

Λ
(2)

where we have denoted v = 〈φ〉. The coupling to the Higgs boson can also be obtained

from the effective operator. In the mass basis of neutrinos it reads:

LYν =
h√
2v
mνiνiLνiL (3)

where φ0 = v + h/
√

2. But due to the smallness of neutrino masses the direct test of

these couplings does not seem to be realistic at present. The only hope to reveal the

theory behind neutrino masses is to probe the scale Λ ∼ c × 1014 GeV. This can be

done essentially in two different ways. Either by low energy high precision experiments

or directly by searching new particle states with the help of high energy colliders. At the

present time, we can hope to probe c as large as c . 10−10.

The effective Weinberg operator can be realized at tree level in three different ways

when one assumes only one kind of new particles. The new degrees of freedom can directly

be associated with the scale of new physics. The three ways to do this are:

- Type I seesaw [7, 8]: It assumes the existence of right-handed neutrinos νR with
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zero hypercharge and singlets of SU(2)L. These neutrinos are thus completely sterile

under the SM gauge group. They are allowed then to have a non-zero mass term MR

at tree level, and a Dirac Yukawa coupling with the Higgs boson yDν̄LνRH. Then

the scale of neutrino mass generation will be simply Λ/c = MR/y
2
D and this means

that MR ∼ y2
D × 1014 GeV.

- Type II seesaw[14]: It assumes the existence of a scalar triplet ∆L = (∆++
L ,∆+

L ,∆
0
L)

of SU(2)L with hypercharge 2. They are allowed then to have a non-zero mass term

M∆ at tree level, Yukawa coupling with the lepton doublet y∆`L`L∆L, and also a

coupling with the Higgs doublet µφφ∆∗L The scale of neutrino mass generation will

then be Λ/c = M2
∆/(µy∆) and therefore M∆ ∼

√
µy∆ × 107 GeV.

- Type III seesaw[15]: It assumes the existence of a fermion triplet Σ = (Σ+,Σ0,Σ−)

of SU(2)L with zero hypercharge. In analogy to Type I one has MΣ ∼ y2
Σ×1014 GeV.

Each of the seesaw types then provides us with a minimum number of fields needed to

describe the masses of neutrinos. They have been studied extensively in the literature, for

a detailed review see [16]. The type I seesaw has limited phenomenology because if one

wishes to produce a νR with the help of the Yukawa interaction, a large Yukawa coupling

is needed, but this will make MR out of the reach of any nearby experiment. Some cancel-

lations in the flavor space or approximate lepton number symmetries [17] are also possible

which can artificially allow large Yukawas and therefore increase the phenomenological

domain of type I seesaw. The type II seesaw, on the contrary, is very attractive. A small

enough µ allows for a low scale of M∆ with large Yukawa couplings at the same time.

From decay of the doubly charged scalar ∆++
L into dileptons, these y∆ couplings can be

determined and can then be confronted with the mass matrix of light neutrinos [19]. The

type III seesaw can also have interesting low scale collider phenomenology because of their

gauge interactions [20].

We also address in this thesis a study of the structure of the seesaw mechanism and

its connection with the Higgs mechanism. In the Left-Right model the neutrino masses

will receive contributions from type I and type II seesaw. The nice feature of the model is
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that the right-handed neutrinos cease to be sterile and become fully interacting particles,

just like their left-handed counterpart. This leads, as we have said, to the remarkable

lepton number violation signature in colliders [10]. Moreover the Yukawa coupling yD to

the Higgs boson, responsible for type I seesaw contribution turns out to depend only on

few observables and is therefore deeply connected to the previous signal of lepton number

violation [21].

In short, this work addresses the interconnection between the high energy collider

phenomenology and the low energy processes such as 0νββ, lepton flavor violation and

the electromagnetic dipole moments of leptons.
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Chapter 1

The Left-Right Model

The most attractive characteristic of the Left-Right symmetric models comes from the

relation between the high and low mass scales of the theory. In the Standard Model parity

is maximally violated being essentially the gauging of the V-A theory [22, 23]. Neutrinos

are massless because there are only left-handed components charged under the SM gauge

group. At first sight there is no relation between the absence of V+A charged currents

and the absence of massive neutrinos. Today we know, thanks to neutrino oscillations,

that neutrinos have small but not zero masses, and we have no reason to believe that V+A

currents do not exist. So the brilliant idea behind the Left-Right models is the connection

between the large scale of the V+A currents and the smallness of neutrino masses [7].

We should also keep in mind that the Left-Right model originally described Dirac

neutrinos [6], and it was only after the observation made above that the interest in the

Majorana nature came back to life once more. Somehow, we believe, the model went back

on the right track to the historical developments that date back to 1937, when Majorana

introduced the concept of a truly neutral particle in an attempt to describe the neutron

and the neutrino.

The Left-Right model is based on the gauge group:

GLR = SU(3)c × SU(2)L × SU(2)R × U(1)B−L (1.1)
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At low energies, it is required that GLR breaks spontaneously to the Standard Model

gauge group:

GSM = SU(3)c × SU(2)L × U(1)Y (1.2)

We expect three extra gauge bosons, two charged W±R analogous to the W± boson (which

will be denoted hereafter by W±L in order to keep the historical symmetric notation), and

one neutral Z ′ analogous to the Z boson. The values of new the gauge couplings gR and

gB−L are related to the known coupling gY by:

1

g2
R

+
1

g2
B−L

=
1

g2
Y

(1.3)

thus their values are neither too small nor too large and it is wrong to believe that one

may recover the SM by making gR = 0. The electric charge generator is given by:

Q = T3L + T3R +
B − L

2
(1.4)

where T3L, T3R are the diagonal generators of SU(2)L and SU(2)R, and B − L is the

baryon minus lepton number charge operator. The fermionic particle content is chosen

symmetrically as doublet representations of SU(2)L and SU(2)R:

qL =

 uL

dL

 , qR =

 uR

dR

 , `L =

 νL

eL

 , `R =

 NR

eR

 , (1.5)

with B − L = −1 for leptons and B − L = 1
3 for quarks. We are assuming implicitly the

existence of three generations of leptons and quarks. The neutrino field N has not yet

been observed. We believe that its mass is considerably larger than that of light neutrinos

ν, and for this reason they will be called heavy neutrinos.
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1.1 The Left-Right symmetry.

The presence of right-handed currents allows us to reconsider the meaning of parity viola-

tion in the SM. With the enlarged gauge group and a symmetric particle content one can

consider the possibility of having spontaneous violation of parity. In general this extra

symmetry has to relate only the left-handed sector with the right handed one. There are

two ways of introducing the symmetry: as generalized parity P or as generalized charged

conjugation C. For fermions they coincide with the usual parity and charge conjugation.

For gauge boson, they are chosen in such a way as to keep the gauge interactions invariant:

P :
{
WL, qL, `L

}
↔
{
WR, qR, `R

}
(1.6a)

C :
{
WL, qL, `L

}
↔
{
−W †R, (qR)c, (`R)c

}
(1.6b)

A consequence of these symmetries is the equality of gauge couplings:

gL = gR = g. (1.7)

This can of course be affected by radiative correction. The couplings can be slightly

different and formally (1.7) should be taken only as a good approximation.

1.1.1 Symmetry breaking.

The Left-Right symmetry forces us to have a symmetric particle content. The minimum set

of scalar fields needed to accomplish the spontaneous symmetry breaking and to provide

fermion masses at tree level are:

Bidoublet: Φ(1, 2, 2, 0),

Triplets Left : ∆L(1, 3, 1,+2),

Triplet Right : ∆R(1, 1, 2,+2).

(1.8)
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The bidoublet Φ will be responsible for breaking the SM symmetry and giving mass to

charged fermions. It is made out of two doublets φ1 and φ2 of SU(2)L and at the same

time the rows form two doublets of SU(2)R. It is given by:

Φ =

(
φ1 φc2

)
=

 φ0
1 φ+

2

φ−1 −φ0∗
2

 . (1.9)

The triplets will break the Left-Right symmetry as well as the B − L thereby giving

Majorana mass to neutrinos. They belong to the adjoint representation of SU(2)L and

SU(2)R and are given by:

∆L =


∆+
L√
2

∆++
L

∆0
L −∆+

L√
2

 , ∆R =


∆+
R√
2

∆++
R

∆0
R −∆+

R√
2

 (1.10)

The scalar potential is the most general renormalizable potential made out of Φ,∆L and

∆R, invariant under GLR and the Left-Right symmetry. Under this last symmetry the

transformation of the scalar fields follows from the invariance of the Yukawa interactions

with leptons and quarks:

P :
{

Φ,∆L,∆R

}
↔
{

Φ†,∆R,∆L

}
(1.11a)

C :
{

Φ,∆L,∆R

}
↔
{

ΦT ,∆∗R,∆
∗
L

}
(1.11b)

This imposes additional constraints on the Yukawa couplings and on the parameters of

the potential. The most general potential is given in Appendix 1. The minimum of the

potential is achieved with:

〈Φ〉 = diag(v1,−v2e
−ia), 〈∆0

L〉 = vL = |vL|eiθL , 〈∆0
R〉 = vR. (1.12)

It is possible to keep only two vevs real by using the broken gauge symmetries. In our

convention we take 〈φ0
1〉 and 〈∆0

R〉 real and instead of v1 and v2 we will work with v and
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β defined as follows:

v1 = v cosβ, v2 = v sinβ (1.13)

The vev vL will contribute to the masses of neutrinos and vR to the scale associated

with V+A currents. Therefore, the only physically acceptable vacuum must satisfy the

following condition:

vL � v � vR. (1.14)

The symmetry breaking can be understood in simple terms by imagining that the scale of

Left-Right symmetry is much larger than the weak scale. This will allow us to leave aside

the bidoublet and concentrate only on the scalar potential of the triplets:

〈V∆〉 = −µ2(v2
L + v2

R) + λ(v4
L + v4

R) + ρ v2
Lv

2
R (1.15)

or alternatively, up to a constant:

〈V∆〉 = λ

(
v2
L + v2

R −
µ2

2λ

)2

+ (ρ− 2λ) v2
Lv

2
R (1.16)

It is clear that when ρ − 2λ < 0 the vacuum that minimize the potential is Left-Right

symmetric: vL = vR. On the contrary, when ρ − 2λ > 0 one of the vev’s has to be

necessarily zero, and thus the vacuum is asymmetric with vL = 0, vR =
√

µ2

2λ . However,

once the SM symmetry is broken a small value of vL will be generated. In fact, adding the

quartic coupling ∆V ∝ tr∆LΦ∆RΦ† = vLvRv
2 to the potential (1.16) one finds vL ∝ v2

vR
.

This proves that the Left-Right symmetry can be spontaneously broken in fully agreement

with (1.14) .

Once the symmetry is broken, the original neutral gauge fields will mix and produce
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Z ′, Z,A:


Z ′

Z

A

 =


1 0 0

0 cθW −sθW
0 sθW cθW




cθR 0 −sθR
0 1 0

sθR 0 cθR




W 3
L

W 3
R

BB−L

 (1.17)

The first rotation is necessary to identify Z ′ and BY and happens at the first stage when

GLR breaks to GSM . The second rotation through the weak mixing angle θW takes places

when the GSM breaks to U(1)em and serves to identify the photon A and the Z boson.

The Left-Right symmetry implies that:

sin θR =
sin θW√
cos θW

. (1.18)

The resulting gauge bosons will not be mass eigenstates and an additional rotation will

be necessary. To reduce the clutter we skip writing down the mass matrices and present

only well known results. For the charged gauge bosons we will need the following rotation:

 W−

W−R

→
 1 ξ∗

−ξ 1


 W−

W−R

 (1.19)

where the complex angle ξ = |ξ|eia contains the same phase of the bidoblet. For the

neutral gauge bosons we will need:

 Z

Z ′

→
 1 ζ

−ζ 1


 Z

Z ′

 (1.20)

with ζ real. The gauge boson masses are given by:

M2
W '

1

2
g2v2, M2

Z '
M2
W

c2
W

, (1.21a)

M2
WR
' g2v2

R, M2
Z′ '

2c2
W

cW
M2
WR

, (1.21b)

11



and the gauge mixing angles by:

sin ξ ' M2
W

M2
WR

sin 2β, sin ζ ' M2
W

M2
WR

c
3
2
2W

2c4
W

. (1.22)

1.1.2 Gauge interactions of fermions

Using (1.17) one can write the gauge interaction of fermions in a familiar form:

∑
iΨγµDµΨ =

∑
Ψi∂/Ψ− eAµJµem −

g

cθW
(ZµJ

µ
Z +

c2
θW√
c2θW

Z ′µJ
µ
Z′)

− g√
2

(W+
LµJ

µ
WL

+W+
RµJ

µ
WR

)− g√
2

(W−LµJ
µ†
WL

+W−RµJ
µ†
WR

)

(1.23)

where the fermionic currents are given by:

Jµem = −eγµe+
2

3
uγµu− 1

3
dγµd (1.24a)

JµZ =
∑

Ψγµ(T 3
L − s2

θW
Q)Ψ (1.24b)

JµZ′ =
∑

Ψγµ
(
T 3
R −

s2
θW

c2
θW

(Q− T3L)
)

Ψ (1.24c)

JµWL
= νLγ

µeL + uLγ
µdL (1.24d)

JµWR
= NRγ

µeR + uRγ
µdR (1.24e)

These currents will get mixed after rotating the gauge bosons to their mass eigenstates

by means of (1.19) and (1.20). This will result in mixed interactions of the form WLµJ
µ
WR

,

ZµJ
µ
Z′ and so on.

1.1.3 Yukawa interactions of leptons

The interactions between leptons and scalars are governed by the following Lagrangian:

LΦ = `L
(
y1Φ + y2Φc

)
`R + h.c. (1.25a)

L∆ = −1

2
y∆L

`cLε∆L`L −
1

2
y∆R

`cRε∆R`R + h.c. (1.25b)
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Here Φc = iσ2Φ∗iσ2. The Yukawa matrices are given in term of the vevs (1.12) and (1.13)

and the mass matrices as follows:

y1 = − 1

vc2β
(cβM

†
D + eiasβM`), y∆L

=
ML

vL
(1.26a)

y2 =
1

vc2β
(e−iasβM

†
D + cβM`), y∆R

=
M∗R
vR

(1.26b)

We can insert these relations back in (1.25a) to get a more physical insight. For this, we

first notice that the bidoublet is made out of two SU(2)L doublets Φ = (φ1, φ
c
2). These

fields are mixed and so it is desirable to work in the physical basis. For this let us call ϕ1

the field that takes the vev 〈ϕ1〉 = v and ϕ2 the field which does not and so 〈ϕ2〉 = 0. We

can then write:

ϕ1 = cβφ1 + e−iasβφ2, ϕ2 = −eiasβφ1 + cβφ2 (1.27)

where we have introduced the shorthand notation cβ = cosβ, etc. Inserting (1.27) and

(1.26) in (1.25a) we obtain:

LΦ =− `L
[
M †D
v
ϕ1 −

M` + e−ias2βM
†
D

vc2β
ϕ2

]
NR

+ `L

[
M`

v
ϕc1 −

M †D + eias2βM`

vc2β
ϕc2

]
eR + h.c.

(1.28)

In the same way, we can expand (1.25b) and write:

L∆ =− 1

2

ML

vL
(∆0

LνLνL −
√

2∆+
LνLeL −∆++

L e cLeL)

− 1

2

M∗R
vR

(∆0
RNRNR −

√
2∆+

RNReR −∆++
R e cReR) + h.c.

(1.29)
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1.1.4 Yukawa interactions of Quarks

In the same way as before we rewrite the quarks bidoublet interactions analogously to

(1.28):

LΦ =qL
(
yq1Φ + yq2Φc

)
qR + h.c. (1.30a)

=− qL
[
Mu

v
ϕ1 −

Md + e−ias2βMu

vc2β
ϕ2

]
uR (1.30b)

+ qL

[
Md

v
ϕc1 −

Mu + eias2βMd

vc2β
ϕc2

]
dR + h.c. (1.30c)

1.1.5 The Left-Right symmetry and the mass matrices

The Yukawa couplings are not arbitrary complex matrices. The Left-Right symmetry

imposes the following relations among them:

P : y1,2 = y†1,2, y∆L
= y∆R

, yq1,2 = yq†1,2 (1.31a)

C : y1,2 = yT1,2, y∆L
= y∗∆R

, yq1,2 = yqT1,2 (1.31b)

In the C case we have symmetric quark and charged lepton matrices and also the Dirac

neutrino mass matrix. In the P case these matrices are almost hermitian. Hermiticity is

lost because of the complex phase eia in the bidoublet vev.

We are interested in the relations resulting on the mixing matrices. In the quark

sector, when diagonalizing the mass matrices Mu and Md by an appropriate rotations of

the quark fields we will encounter a mixing matrix in the charged current. We write the

quark mass matrices in term of the mass eigenvalues:

Mu = ULmuU
†
R, Md = DLmdD

†
R (1.32)

where mu,md are the diagonal quark masses and UL, UR, DL, DR are the rotation matrices

of the fields uL, uR, dL, dR necessary to achieve the diagonalization. The mixing matrices

14



that will appear in the charged V-A and V+A currents are:

V −A quark mixing : V q
L = U †LDL (1.33a)

V +A quark mixing : V q
R = U †RDR (1.33b)

Now when Mu,Md are almost hermitian then UR = ULSu and DR = DLSd, with

Su, Sd diagonal sign matrices1. This implies that:

P : V q
R ' SuV

q
LSd (1.34)

When Mu and Md are symmetric we have UR = U∗LK
∗
u, DR = D∗LKd, with Ku,Kd diagonal

matrices of phases2 and therefore:

C : V q
R = Ku(V q

L)∗Kd (1.35)

Analogously, in the lepton sector we will encounter leptonic mixing matrices when

diagonalizing the mass matrices of charged leptons, light neutrinos and heavy neutrinos.

The light neutrino mass matrix Mν is diagonalized by VL, the heavy neutrino mass MN

by VR, and we can write:

Mν = V ∗LmνV
†
L , MN = VRmNV

T
R (1.36)

In the basis in which the charged leptons matrix is diagonal, the rotation matrices coincide

with the leptonic mixing matrices:

V −A leptonic mixing : VL (1.37a)

V +A leptonic mixing : VR (1.37b)

Due to the nature of the seesaw formula which contains an extra matrix MD, no connection

1For example, mu = XmuX has X = U†LUR = Su as solution.
2The condition reduces to mu = X∗muX and therefore X = UTLUR = K∗u.
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between the left and right-handed leptonic mixing matrices follows directly from C or P.

1.2 Seesaw mechanism

The mass matrix of neutrinos is given in the (νL, NL) basis by the following 6× 6 matrix:

 ML MT
D

MD MR

 (1.38)

By an appropriate rotation of the neutrino fields it can be brought to a block diagonal

form. To do this, let us imagine that the mass scale of MR is much larger than that of

ML and MD. More precisely, we will only consider the first terms in the expansion in

M−1
R when performing the diagonalization. We thus expect the heavy neutrino mass at

the large scale to be approximately unperturbed:

MN = MR (1.39)

The rotation is then made through a “small” mixing matrix Θ as follows:

 νL

NL

→
 1 Θ†

−Θ 1


 νL

NL

 (1.40)

The matrix Θ is given by:

Θ = M−1
N MD (1.41)

and mass matrix of light neutrinos is given by the canonical seesaw formula:

Mν = ML −MT
D

1

MN
MD (1.42)

Recalling that vL ∝ v2/vR, we observe that both terms in the neutrino mass matrix are

in general of the same order. Therefore the largeness of vR ensures small neutrino masses.
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This is known as the seesaw mechanism [7, 8]. But we remark that the scale of N may be

well below the scale of WR. The same is also true for MD, which can be many orders of

magnitude below MW . Just like it happens in the standard model if we compare the mass

of W with the mass of the electron. Meaning that Yukawas can be arbitrary small, and

yet we do not understand how the mass hierarchies are generated. But this by no means

lowers the stature of the seesaw mechanism. There is a large portion of the parameter

space with low scale of heavy neutrinos, susceptible of experimental verification, that must

be taken seriously.

1.2.1 Light-Heavy Neutrino mixing - Inverting the seesaw formula

The light neutrino mass matrix has almost been reconstructed by oscillation experiments.

Only the mass scale of the lightest neutrino, their hierarchy and the CP violating phases

need to be determined. The LHC offers the possibility to measure the heavy neutrino

masses and right handed mixing matrix in the near future. We then may consider inverting

the seesaw formula to hopefully obtain some knowledge of the Dirac mass matrix itself,

and in turn predict the coupling of neutrinos to the Higgs boson.

In this section we show that, thanks to the Left-Right symmetry responsible for making

MD symmetric, the Dirac matrix can indeed be determined [21]. The left-right symmetry

C provides us with the following relations:

MD = MT
D (1.43a)

ML = εMN (1.43b)

where ε has been defined as the ratio of the vevs of the triplets:

ε =
vL
vR
. (1.44)
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Inserting (1.43) in the seesaw formula (1.42) and writing it in terms of Θ we obtain:

Mν = MN (ε−Θ2) (1.45)

Then we can invert this equation and solve for Θ [21]:

Θ =
√
ε−M−1

N Mν (1.46)

The mixing matrix Θ, which in general is undetermined [24], turns out to depend only

on the parameter ε and on the mass matrices of light and heavy neutrinos. We recall

that the square root of a matrix has a certain number of discrete solutions and, only in

some degenerate cases, the root may contain arbitrary coefficients. Nevertheless these

arbitrariness should be regarded as unphysical. To understand what happened, we shall

count the number of parameters before and after the diagonalization. We started with two

complex symmetric matrices MN and MD, and with one complex parameter ε. We ended

with two complex symmetric matrices Mν and MN and with one complex matrix Θ. This

last matrix Θ can have only one free parameter ε and not n2 if the degrees of freedom are

to be conserved. The matrix Θ found in (1.46) have this remarkable property. The Dirac

mass matrix is given simply by:

MD = MN

√
ε−M−1

N Mν (1.47)

The physical matrix that couples the mass eigenstates of light and heavy neutrinos to the

Higgs boson is given by:

Mphys
D = V †RMDVL (1.48)

The remarkable fact is that once Mν ,MN and ε are measured, the coupling Mphys
D is

predicted. This allows a verification of the seesaw mechanism.
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1.2.2 Examples of MD

The general procedure of extracting the root of a matrix is outlined in Appendix 2. Here

we present two cases in which the Dirac mass matrix takes a simple form.

Case 2× 2

In the 2 × 2 case there exists an exact formula for the square root of a matrix3. In this

case (1.47) reduces to:

MD = ± 1√
τ + 2δ

[(ε+ δ)MN −Mν ] , (1.49)

with

τ = tr(ε−M−1
N Mν) , δ = ±

√
det(ε−M−1

N Mν). (1.50)

There are four solutions in total.

Case VR = V ∗L

This choice of the leptonic mixing angles is analogous to what happens in the quark sector

where, up to phases, the C symmetry implies that V q
R = V q∗

L . In the lepton sector this is

not mandatory but is a clean example which we believe worth mentioning. Using (1.36)

in (1.47) together with VR = V ∗L it is easy to find4:

MD = V ∗LmN

√
ε − mν

mN
V †L . (1.51)

Each eigenvalue comes with a ± sign in the front:

±
{
mN1

√
ε − mν1

mN1

,±mN2

√
ε − mν2

mN2

,±mN3

√
ε − mν3

mN3

}
, (1.52)

3The square root of a 2× 2 matrix is given by
√
A = ±1

A±2

√
det(A) I2×2√

tr(A)±2 2
√

det(A)
.

4The mixing matrix is Θ = VL
√
ε− mν

mN
V †L
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In our convention mN2 and mN3 carry complex Majorana phases, and for this reason the

± sings are not very important. Moreover, in this case the number of families is also

irrelevant and we are dealing with a trivial generalization of the one dimensional case.

The physical coupling to the Higgs is diagonal:

(Mphys
D )ij = δijmNjsj

√
ε− mνj

mNj

(1.53)

with si = ±. There are 8 solutions in total for three generations.

1.2.3 General Parametrization of MD.

In this section we comment about an attempt that was made to invert the seesaw formula

in favor of the Dirac mass matrix. This was done for the cases in which MD possesses no

symmetries. Consider for simplicity the case in which ML is set to zero: 5

Mν = −MT
D

1

MN
MD (1.54)

The so called Casas-Ibarra parametrization of the Dirac mass matrix reads [24]:

MD = iVR
√
mNO

√
mνV

†
L (1.55)

with O an orthogonal complex matrix:

OOT = 1. (1.56)

Therefore (1.55) provides in general no unique solution but a family of MD parametrized

by three complex parameters in the orthogonal complex matrix O.

The point is that when MD is symmetric, and we believe this is a well motivated

consequence of the Left-Right symmetry, we have 3 additional complex relations which fix

5The case with nonzero ML was discussed in [25].
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the orthogonal complex matrix completely. The seesaw formula leads us directly to:

MD = iMN

√
M−1
N Mν (1.57)

with only a finite number of discrete solutions.
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1.3 Summary

In Table 1.1 we collect the interactions of leptons with gauge bosons and with physical

scalar fields. In Table 1.2 we do the same for quarks. In Table 1.3 we write all the physical

observables of the theory appearing in Table 1.1 and 1.2. In the next chapter part of the

phenomenological consequences of these interactions, in particular the leptonic ones, will

be discussed in detail.
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leptons & interaction Lagrangian

WL − g√
2

[
ēL /WLVLνL + e /WL(Θ†V ∗R)γLN

]
+ h.c.

WR − g√
2
ēR /WRVRNR + h.c.

Z
− g

cW

{
ē /Z
[
(−1

2 + s2
W )γL + s2

WγR
]
e+ 1

2 ν̄L /ZνL

}
− g

cW
1
2 ν̄ /Z(V †LΘ†V ∗R)γLN + h.c.

Z ′
− g

cW
√
c2W

{
ē /Z ′
[

1
2s

2
WγL + (−1

2 + 3
2s

2
W )γR

]
e+

s2
W

2
ν̄L /Z

′νL

+
c2
W

2
N̄R /Z

′NR −
c2W

2

[
ν̄ /Z ′(V †LΘ†V ∗R)γLN + h.c.

]}

Higgs
− H

v

(
eLm`eR +NRM

phys
D νL

)
+ h.c.

−H
v

[
ν(V T

L MIVL)γLν +N(V †RδMNV
∗
R)γLN

]
+ h.c.

neutral ∆L,∆R

− 1

2

1

vL

[
H0
Lν
(
V T
L MIIVL

)
γLν + iA0

Lν
(
V T
L MIIVL

)
γLν

]
+ h.c.

−1

2

mN

vR
H0
RNN

∆+
L ,∆

++
L ,∆++

R

1

2

MN

vR

[√
2∆+

LνγLe+ ∆++
L e cγLe

]
+

1

2

M∗N
vR

∆++
R e cγRe+ h.c.

netural ϕ2

V †Lm`VR + e−ias2β(Mphys
D )†

vc2β
H0

2νLNR + h.c

VL(Mphys
D )†V †R + eias2βm`

vc2β
H0∗

2 eLeR + h.c

charged ϕ2

m`VR + e−ias2βVL(Mphys
D )†

vc2β
H−2 eLNR + h.c

−(Mphys
D )†V †R + eias2βV

†
Lm`

vc2β
H+

2 νLeR + h.c

Table 1.1: Summary of the leptonic gauge and scalar interactions in the mass basis. Here
MI and MII are the seesaw contributions to neutrino masses Mν = MI + MII . The
matrix δMN is the correction to the heavy right handed neutrino mass matrix δMN =
1
2(MDΘ† + Θ∗MD)
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quarks & interaction Lagrangian

WL − g√
2
d̄L /WLV

q
LuL + h.c.

WR − g√
2
d̄R /WRV

q
RuR + h.c.

Z
− g

cW
ū /Z
[
(1

2 − 2
3s

2
W )γL − 2

3s
2
WγR

]
u

− g

cW
d̄ /Z
[
(−1

2 + 1
3s

2
W )γL + 1

3s
2
WγR

]
d

Z ′
− g

cW
√
c2W

ū /Z ′
[
− 1

6s
2
WγL + (1

2 − 7
6s

2
W )γR

]
u

− g

cW
√
c2W

d̄ /Z ′
[
− 1

6s
2
WγL + (−1

2 + 5
6s

2
W )γR

]
d

Higgs − H

v

(
uLmuuR + dLmddR

)
+ h.c.

netural ϕ2

V q†
L mdV

q
R + e−ias2βmu

vc2β
H0

2uLuR + h.c

V q
LmuV

q†
R + eias2βmd

vc2β
H0∗

2 dLdR + h.c

charged ϕ2

mdV
q
R + e−ias2βV

q
Lmu

vc2β
H−2 dLuR + h.c

−muV
q†
R + eias2βV

q†
L md

vc2β
H+

2 uLdR + h.c

Table 1.2: Summary of the quark gauge and scalar interactions in the mass basis.
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g gauge coupling

MW ,MWR
mass of W and WR

v =

√
2MW

g
physical vev breaking the SM

vR =
MWR

g
physical vev breaking SU(2)R × U(1)B−L

V q
L , V

q
R quark mixing matrices

VL, VR leptonic mixing matrices

mu,md,m` diagonal mass matrices of quarks and charged leptons

Mν = V ∗LmνV
†
L light left-handed neutrino mass matrix

MN = VRmNV
T
R heavy right-handed neutrino mass matrix

Θ =
√
ε−M−1

N Mν light-heavy neutrino mixing matrix

Mphys
D = V †RMNΘVL higgs coupling to light and heavy neutrinos

vL = 〈∆0
L〉 complex vev of ∆0

L

β = arctan
〈φ1〉
〈φc2〉

β angle of the doublets inside the bidoublet

eia complex phase of 〈φ2〉

Table 1.3: Summary of the physical observables appearing in Table 1.1 and Table 1.2
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Chapter 2

Phenomenology

In this chapter we perform a study of the main phenomenological implications of the Left-

Right model. We aim here to establish a connection between the high energy physics of

colliders and the low energy physics of neutrinoless double beta decay, electromagnetic

dipole moments and lepton flavour violating processes.

2.1 Measuring the scale of parity restoration

Colliders offer the best tool to access the new physics. The LHC can hopefully sit on

the resonance of WR as shown in Figure 2.1. Once produced, WR will decay ∼ 75%

p

q

q
p

W+
R

1

Figure 2.1: The production of WR at the LHC.

into quarks and ∼ 25% into charge leptons and heavy neutrinos. The decay channel

into heavy neutrinos is open only for those mN < MWR
. These Majorana fermions will

in turn decay 50% into leptons and 50% into anti-leptons plus two jets. The same-sign

lepton decay of WR will signal the violation of lepton number by two units [10]. The

corresponding Feynman diagram is shows in Figure 2.2. The KS and also the lepton
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p

q

q
p

W+
R

l+

N

l+

W −
R

jet

jet

1

Figure 2.2: The Keung and Senjanovic production of same-sign charged lepton pairs.

flavour violating channel will allow the determination of the right handed leptonic mixing

matrix VR. Therefore a direct reconstruction of the heavy neutrino mass matrix MN is

promising. A full Monte Carlo simulation was done in [26]. The LHC at 14 TeV will be

able to reach up to ∼ 6 TeV with an integrated luminosity of ∼ 300 fb−1.

2.2 Testing the Higgs mechanism.

The scalar interactions allow us to test the multiple Higgs mechanism present in the theory.

On one side we have the Majorana nature of heavy neutrinos with ∆R being the Higgs

responsible for its mass generation and on the other hand we have the Dirac nature of

charged leptons and quarks in which the masses are governed by the Standard Model

Higgs boson. The light neutrino is particularly interesting because it is receiving, through

the seesaw mechanism, contributions from both sides. In the following, we outline how to

probe experimentally this interrelated Higgs and seesaw mechanism.

The Yukawa couplings of leptons to the left and right doubly-charged triplets are tied

to the masses of the heavy neutrinos:

YL = Y ∗R =
g

MWR

VRmNV
T
R (2.1)

The decay signatures of ∆++
L and ∆++

R into pairs of same-sign leptons will therefore provide

information about the heavy neutrino mass matrix. If one could in principle measure all

the channels into dilepton one would get 6 parameters (Y∆)ij . Combining this with the

mN and VR from the same-sign charge lepton signal we could in the best scenario get

information on the Majorana phases. In any case the confirmation of (2.1) will be a direct
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test of the Majorana Higgs mechanism.

In the Dirac Higgs mechanism, it is a well know fact that the couplings of charged

fermions to the Higgs boson are predicted to be proportional to the masses of the same

fermions. The same would be true if we were dealing only with Dirac neutrinos. For

Majorana neutrinos the coupling to the Higgs boson is essentially different. Nevertheless,

in the left-right model this coupling is predicted, meaning that the seesaw mechanism by

no means overshadows the Higgs mechanism [21]. This coupling Mphys
D was given in (1.48).

Here we write it explicitly in term of neutrino masses and mixing:

Mphys
D = mNV

T
R VL

√
gvL
MWR

− (V T
R VL)†

1

mN
(V T
R VL)∗mν (2.2)

It depends only on VR,mN and ε. We have already seen that the first two can be ob-

tained in principle from the KS signal and from the decay of the doubly charged scalars.

The vev vL = 〈∆L〉 can also be hunted in the colliders provided it is not too small. It

parametrizes the strength of the interaction between ∆++
L and the WL boson. With the

predicted coupling of neutrinos to the Higgs boson we need only to wait for the experi-

mental confirmation.

2.3 Experimental limits on particle masses

In order to have a picture on the mass scale of the particles that we will be dealing in

the following sections, we present in Table 2.1 the experimental limits on particle content

of the theory masses that arise from direct searches in the collider. The theoretical limit

on the heavy doublet arises from the precision measurements on the mass difference of

KL-KS mesons.

2.4 Lepton flavour violation

If neutrinos were massless, we could have absorbed the leptonic mixing matrix by a redef-

inition of the neutrino fields. This could have been done by rotating the neutrino fields

28



Particle Lower limit ref.

WR 2.9 TeV [27]

Z ′ 3 TeV [28]

A0
φ ∼10 TeV (Theory) [29]

H0
φ ∼10 TeV (Theory) [29]

H+
φ ∼10 TeV (Theory) [29]

A0
L 45 GeV [28]

H0
L 45 GeV [28]

∆+
L 70-90 GeV [30]

∆++
L 100-355 GeV [31]

H0
R - -

∆++
R 113-251 GeV [31, 32]

Table 2.1: Experimental limits on the particle masses adapted from [33].

in the same way charged leptons were rotated. In that case the individual flavor lep-

ton number would be conserved. We thus see that flavour conservation depends only on

whether neutrinos are massive particles or not. Today we know that neutrinos of different

flavour oscillate into each other. This is interpreted as neutrinos being created as flavour

eigenstates, instead of mass eigenstates. Neutrino oscillation experiments provide us with

useful information about the left-handed leptonic mixing matrix VL and the mass squared

difference of light neutrinos ∆m2
ν [16]. In Table 2.2 we collect the oscillation parameters

obtained from recent experiments.

However, there are many other processes that violate the lepton flavor number. Table

2.3 shows the experimental limits on rare leptonic decay modes of the muon and tau

leptons. Also Table 2.4 shows limits on LFV decay modes for light mesons and the Z

boson. The most sensitive limits are given by µ→ eγ, µ→ e+ee, K0
L → e±µ∓. This last

one can be mediated by the heavy doublet at tree level, but we know that it has to have

large mas from the limits on KL-KS mass difference. Thus the most relevant processes

are provided by the leptonic rare decays of the muon.
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Central value 99% CL Range

sin2 θ12 0.320 31.3◦ < θ12 < 37.5◦

sin2 θ13 N : 0.0246, I : 0.0245 7.5◦ < θ13 < 10.5◦

sin2 θ23 N : 0.613, I : 0.600 36.8◦ < θ23 < 55.5◦

∆m2
21 in eV2 7.62× 10−5 (7.12− 8.20)× 10−5

∆m2
31 in eV2 N : 2.55× 10−3, I : 2.43× 10−3 (2.21− 2.74)× 10−3

Table 2.2: Oscilation parameters. Table adapted from [34]. There is a small difference
between the normal (N) and the inverted (I) hierachy.

The contribution of light neutrino masses to µ→ eγ was found to be [49]:

BR(µ→ eγ) =
3α

32

∣∣∣∣∣(VL)ei(VL)∗µi
m2
νi

M2
W

∣∣∣∣∣
2

(2.3)

And the contribution to µ → e+ee contains an additional factor of α. Plugging numbers

we see that both branching ratios are predicted to be smaller than 10−50. This is a general

result, any contribution of light neutrinos in LFV other than oscillations can, most of the

time, be safely be neglected.

The effective operator involved in µ → eγ is of dimension 5, and involves a generic

coupling emµG
2
FM

2
W /Λ

2 with Λ the scale of new physics. The branching ratio is effectively

given by:

B(µ→ eγ)NP ∝ α
M4
W

Λ4
(2.4)

Meaning that the experiments on µ→ eγ are probing the scale Λ ∼ 20TeV. But of course

if there is a loop involved the scale will be an order of magnitude smaller. In the same

way, the effective operator of µ→ e+ee is of dimension 6 and we can write:

B(µ→ e+ee)NP ∝
M4
W

Λ4
(2.5)

And the experiments on µ → e+ee are in principle probing the scale Λ ∼ 80TeV. From
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LFV process Upper Limits on BR Reference

µ→ eγ 2.4× 10−12 [39]

τ → eγ 3.3× 10−8

[40]
τ → µγ 4.4× 10−8

µ→ e+ee 1.0× 10−12 [38]

τ → e+ee 2.7× 10−8

[41]

τ → e+µµ 1.7× 10−8

τ → e+eµ 1.8× 10−8

τ → µ+ee 1.5× 10−8

τ → µ+µµ 2.1× 10−8

τ → µ+eµ 2.7× 10−8

Table 2.3: Leptonic LFV decay modes

this point of view, all the physics that generates the masses of light neutrinos will therefore

be somehow restricted by these processes. In the next section we show how the interplay

of the different scales of the model can produce small rates of LFV while allowing, at the

same time, a low scale of WR of no more than few TeV. It turns out that the Λ used above

is in fact Λ ' mS
mN

MWR
where S is one of the scalar fields and N is a heavy neutrino. By

having mN below mS we can generate an artificially large Λ and can therefore comply

with the experimental constraints.

2.4.1 LFV decay modes of Leptons

Tree level decay µ→ e+ee

We begin by writing the effective Hamiltonian for the tree level exchange of ∆++
L and

∆++
R . From (1.29) one obtains the following effective four-fermions interaction:

H = cLijkl`
c
i γL`j`kγL`

c
l + cRijkl`

c
i γR`j`kγR`

c
l (2.6)
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LFV process Upper Limits on BR Reference

π0 → e+µ− 3.4× 10−9 [42]

π0 → e−µ+ 3.8× 10−10 [43]

K+ → π+µ+e− 1.3× 10−11 [44]

K+ → π+µ−e+ 5.2× 10−10 [42]

K0
L → e±µ∓ 4.7× 10−12 [45]

K0
L → π0e±µ∓ 7.6× 10−11 [46]

Z → e±µ∓ 1.7× 10−6 [47]

Z → e±τ∓ 9.8× 10−6 [47]

Z → µ±τ∓ 1.2× 10−5 [48]

Table 2.4: LFV decay modes of light mesons and the Z boson.

where the coefficients cL,Rijkl are found to be:

cLijkl =
√

2GF
M2
W

M2
WR

(M∗N )ij(MN )kl
m2

∆++
L

(2.7)

cRijkl =
√

2GF
M2
W

M2
WR

(MN )ij(M
∗
N )kl

m2
∆++
R

(2.8)

Assuming only that the mass of the decaying particle m`1 is much larger than the masses

of the decay products we obtain the following three-body decay rate:

Γ(`j → `ci`k`l) =
m5
`j

768π3

(
|cLijkl|2 + |cRijkl|2

)
=
G2
Fm

5
`j

384π3

M4
W

M4
WR

∣∣∣∣(MN )ij(MN )kl
m2

∆++

∣∣∣∣2 (2.9)

where m−4
∆++ = m−4

∆++
L

+ m−4

∆++
R

. For the muon only the decay µ → e+ee is kinematically

allowed. For the tau there are six channels allowed τ → {e+ee, e+eµ, e+µµ} and those

with e+ replaced by µ+. The strongest constraint will arise from µ→ e+ee. The branching
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Figure 2.3: Feynman diagrams of µ→ e+ee

ratio normalized to the standard muon decay is given by:

BR(µ→ ecee) ' 10−7

(
3.5TeV

MWR

)4 ∣∣∣∣(VR)µi(VR)ei(VR)ej(VR)ej
mNimNj

m2
∆++

∣∣∣∣2 (2.10)

When MWR
is not more than few TeV, there are only three ways that can make this

branching ratio small enough to comply with the experimental constraint given in Table2.3:

BRexp(µ→ e+ee) < 10−12 (2.11)

For example, an almost diagonal right-handed mixing matrix VR ' 1, or an almost degen-

erate heavy neutrino spectra mN1 ' mN2 ' mN3 are enough to make (2.10) vanish. But

far more interesting is when the ratio mNi/m∆++ is small itself. Indeed, for MWR
at the

reach of LHC, the following ratio:

mNi

m∆++

.
1

10
(2.12)

will ensure that for any VR and any heavy neutrino hierarchy the branching ratio agrees

with the experimental limit given in Table 2.3.

Radiative decay µ→ eγ

We now calculate the radiative decay rate of `1 → `2γ with the help of [50] and update

the formulas presented in [51] by including the mixing of light and heavy neutrinos. The

relevant Feynman diagrams are shown in Figure 2.4. The effective Hamiltonian reads as

follows:

H`1→`2γ = `2 σµν
[
(σLL + σLR)21γR + (σRR + σRL)21γL

]
`1F

µν (2.13)
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Figure 2.4: Feynman diagrams of µ→ eγ.

and total decay rate is given by the following generic formula:

Γ(`1 → `2γ) =
m3
`1

16π

(
|(σLL + σLR)21|2 + |(σRR + σRL)21|2

)
(2.14)

The matrices σLL, σLR, σLR and σRL are found to be:

σLL = m`1

eGF

4
√

2π2

M2
W

M2
WR

(
1

24

M∗NMN

m2
∆+
L

+
1

3

M∗NMN

m2
∆++
L

)
(2.15a)

σRR = m`1

eGF

4
√

2π2

M2
W

M2
WR

(
1

8

MNM
∗
N

M2
WR

+
1

3

MNM
∗
N

m2
∆++
R

)
(2.15b)

σLR = m`1

eGF

4
√

2π2

(
Θ†V ∗RF1(t)V T

R Θ− ξ∗Θ†V ∗RF2(t)V T
R

M∗N
m`1

)
(2.15c)

σRL = m`1

eGF

4
√

2π2

(
|ξ|2V ∗RF1(t)V T

R −
MN

m`1

V ∗RF2(t)V T
R ξΘ

)
(2.15d)
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where the loop fuctions entering in σLR and σRL are:

F1(t) =
−4t3 + 45t2 − 33t+ 10

12(t− 1)3
− 3t3 log t

2(t− 1)4
(2.16)

F2(t) =
t2 − 11t+ 4

2(t− 1)2
+

3t2 log t

(t− 1)3
(2.17)

where t = m2
N/M

2
W . Moreover, as we are interested in a low scale of heavy neutrinos,

we have taken the limit mN �MWR
and simplified an extra loop function present in the

gauge component of σRR. The branching ratio µ→ eγ normalized to the standard muon

decay can be expressed ignoring square of ξ and Θ and after some simplifications as:

BR(µ→ eγ) ' 10−9

(
3.5TeV

MWR

)4
( ∣∣∣∣13M∗NMN

m2
L

− e−ias2β
M †D
mµ

VRF2(t)V †R

∣∣∣∣2
eµ

+

∣∣∣∣13MNM
∗
N

m2
R

− eias2βVRF2(t)V †R
MD

mµ

∣∣∣∣2
eµ

) (2.18)

where we have shortened the expression defining:

1

m2
L

=
1

24

1

m2
∆+
L

+
1

3

1

m2
∆++
L

,
1

m2
R

' 1

8

1

M2
WR

+
1

3

1

m2
∆++
R

(2.19)

The mass of ∆+
L can not be much lower than the mass of ∆++

L . To see this we refer to the

Appendix A. From Table A.1 the following mass difference can be obtained:

M++
∆L
−M+

∆L
=
α3

2
v2 cos 2β (2.20)

where α3 is a dimensionless parameter of the scalar potential. This means that during

the symmetry breaking of GSM the masses of the scalar triplet will get split. Coming

back to (2.19), we can safely ignore the singly charged scalar contribution. Moreover the

scale of the doubly charged scalar ∆++
R is phenomenologically less constrained and can

therefore be much lighter than that of the right-handed gauge boson WR. We thus follow
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X Au Al Ti Pb Cu S

B(µX → eX) < 7× 10−13 - 4.3× 10−12 4.6× 10−11 1.6× 10−8 7× 10−11

Table 2.5: Limits on muon conversion.

the scenario with light ∆++
R . From now on, we will always use approximately:

1

m2
L

' 1

3

1

m2
∆++
L

,
1

m2
R

' 1

3

1

m2
∆++
R

, (2.21)

in the branching ratio (2.18).

By comparing this branching ratio (2.18) with that of µ→ e+ee found in the previous

section in (2.10) we see that roughly the branching ratio of µ→ eγ is expected to be smaller

than that of µ→ e+ee by a factor of 10−2 because of the loop suppression. The rate of both

processes is controlled mainly by the mass ofWR, and secondly by the lightest of the doubly

charged particles ∆++
R ,∆++

L . Both branching ratios have a strong flavor dependence on

the right-handed mixing matrix, with the right handed neutrino mass matrix controlling

the flavor structure. The process µ → e+ee is controlled by (MN )eµ(MN )ee whereas

µ → eγ is controlled by (MNM
†
N )eµ which has the extra feature of being independent of

the Majorana phases. Interestingly the Dirac mass matrix contribution is relevant when

the following generic relation is satisfied:

mD

mµ
∼ m2

N

m2
∆++

(2.22)

Thus, for the parameter spaces accessible to the LHC (for example mN ∼ 100 GeV and

m∆++ ∼ 1 TeV), a Dirac mass mD of the order few MeV would be on the border limit.

2.4.2 Muon-electron conversion

The lepton flavor can also be violated in the process µ + X → e + X [53], where X is a

given muonic atom. The muon instead of decaying naturally into an electron, neutrino

and antineutrino, gets transformed into an electron. The observation of an electron with
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fixed energy mµ−B, with B the binding energy of the muonic atom, will signal the muon

conversion and the violation of lepton flavor number. Table 2.5 shows the experimental

upper limits on the branching ratio normalized to the standard muon capture in the same

nuclei.

In the left-right model the process can be mediated by the photon or by any of the

two heavy neutral gauge bosons Z,Z ′. The photonic interaction involves on-shell photons

which are contained in the electric field of the atom [54]. Their contribution to amplitude

will be the same as we used before for µ → eγ and the rate will contain an extra factor

α. Therefore these photonic on-shell interactions will not give any new constraint. The

interesting contribution then comes from off-shell photonic interactions. It turns out that

the contribution of the doubly charged particles ∆++
L,R is always logarithmically enhanced

[55]:

enhancement factor ∼ log
m2
µ

m2
∆++

(2.23)

Figure 2.5 shows the corresponding Feynman diagrams. This enhancement allows one

to ignore the contribution of the Z boson1 and focus only on the doubly charged particles.

The decay rate for a general effective Hamiltonian can be found in [52]. In our case we

have for the branching ratio normalized with respect to the capture rate the following

expression [51]:

B(µN → eN) =
512πα2

3

Γµ
Γcap

(V (p))2

m5
µ

M4
W

M4
WR

(
log

m2
µ

m2
∆++

)2 ∣∣∣∣MNM
∗
N

m++
∆

∣∣∣∣ 2
eµ

(2.24)

where V (p) (of dimension [m]5/2) takes into account the effect of the electric charge density

of the proton on the outgoing electron, and Γcap is the capture rate. These values can be

found tabulated for every element in [52]. For example, for Au we have V
(p)

Au = 0.0974m
5/2
µ

and ΓAu
cap ' 6 Γµ. Taking the enhancement in the region of phenomenologically interest

1However they were calculated in [51]
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Figure 2.5: Feynman diagrams of muon conversion.

log2 ∼ 2× 102 one finds:

B(µAu→ eAu) ' 5× 10−10

(
3.5TeV

MWR

)4 ∣∣∣∣MNM
∗
N

m++
∆

∣∣∣∣ 2
eµ

(2.25)

The muon conversion mediated by the doubly charged scalars is therefore slightly more

constrained than the decay µ → eγ. Both branching ratios are theoretically of the same

order because the additional factor of α in the muon conversion gets balanced by the large

logarithm coming from the loop, but at the same time the limits on the conversion are

roughly one order of magnitude stronger.

2.5 Interplay between different LFV processes

Lepton flavor violation could vanish if the right-handed mixing matrix is nearly diagonal.

So a definite prediction can not be made and the different rates depend crucially on

VR. For a generic VR one could also have a particular mass spectrum of right-handed

heavy neutrinos which could make the rate of one or more processes vanish as well. The

interesting processes with high sensitivity are µ → e+ee, µ → eγ, and µ-e in the nuclei.

The common flavor dependence of µ→ eγ and µ-e conversion is given by:

(MNM
∗
N )eµ = ∆m2

12c13s12(c12c23 − e−ids12s13s23) + e−id∆m2
13s13c13s23 (2.26)

with ∆m2
12, ∆m2

13 the mass squared difference of the heavy neutrinos and with s12 =

sin θR12, etc. This factor can vanish for some ∆m2
13 and ∆m2

13. For µ → e+ee one have
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LFV process Future sensitivity ref.

µ→ e+ee 10−15 Mu3e

µ→ eγ 10−15 Meg

µAl→ eAl 10−17 Meco

Table 2.6: Upcoming LFV experiments.

additionally the freedom of the Majorana phases and they can easily make the rate vanish

as well. So without the masses mN we can not constrain our parameter space either. The

problem is that we have only three competitive processes. We could have done more if

we would have the three radiative decay of `1 → `2γ and the seven three body decay

`i → `i`j`k with similar experimental sensitivity. They would make 10 constraints on 3

masses mNi , 3 angles and 4 phases in VR. But this scenario is far from being realistic.

Table 2.6 shows some future experiments and their experimental reach. When combining

this future prospects from LHC searches on WR and the heavy neutrino mass matrix we

could then translate the LFV limits into quantitative constraints on the scalar masses.

The prospects on processes µ→ eγ and µ-e in the nuclei are particularly encouraging.

The ratio of both processes can be used to get useful information on the masses of the

doubly charged scalar particle. One has for doubly charged contributions the following

ratio [51]:

RX =
B(µX → eX)

B(µ→ eγ)
= cX × α×

1

m4
∆++
L

log
m2
µ

m2
∆++
L

2

+
1

m4
∆++
R

log
m2
µ

m2
∆++
R

2

1

m4
∆++
L

+
1

m4
∆++
R

(2.27)

where cX depends only on the particular muonic atom:

cX =
Γµ

Γcap

(32πV (p))2

m2
µ

(2.28)

The value of cX is shown for some interesting atoms in Table 2.7. The ratio RX is therefore
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X Au Al Ti Pb Cu S

cX 3.3 1.7 2.8 2.4 2.7 1.9

Table 2.7: cX defined in the text basically governs the ratio B(µX → eX)/B(µ→ eγ).

predicted by the theory to be close to one. Its precise value will then permit to probe the

scalar sector of the theory and can be used to complement collider searches in the hunt

for the doubly charged particles.

2.6 Neutrinoless double beta decay

Apparently Majorana himself was thinking about an experiment that could distinguish

“truly” neutral particles, which are identical to its antiparticles, from “normal” neutral

particles which have distinct antiparticles [4]. At that time the only known electrically

neutral particles were the photon, the neutron and the hypothetical neutrino. It was clear

the photon having only real components was a truly neutral particle in that sense. Now

we know that the neutron is made out of three electrically charged quarks, and therefore

is not equal to the antineutron. The question whether or not the neutrino is a “truly”

neutral particle is still open. The experimental idea came shortly after, if neutrinos are

Majorana particles then double beta decay may occur without the emission of neutrinos

[2].

The standard double beta decay, can only be seen in those nuclei in which single beta

decay is kinematically forbidden. It has been experimentally observed for many nuclei:

76Ge, 82Se, 100Mo, 130Te , 136Xe, 150Nd, etc. The outgoing electrons have a continuum

energy spectrum due to the presence of two antineutrinos. The sum of their energies

are less than the available energy Q which is of the order of few MeV. Table 2.8 shows

the double beta decay half-life and the current experimental limits on 0νββ for some

interesting nuclei.

The contribution of light neutrino masses to the 0νββ decay rate is proportional to
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76Ge 82Se 100Mo 130Te 136Xe 150Nd

T
1/2
2νββ

1021yr
1.74 [56] 0.096 [57] 0.007[58] 0.7 [59] 2.11 [60] 0.009 [61]

T
1/2
0νββ

1025yr
2.2 [62] 0.036 [63] 0.11 [63] 0.013 [59] 0.006 [64] 0.002 [61]

Table 2.8: Double beta decay half-life and limits on neutrinoless double beta decay

the 1-1 element of the neutrino mass matrix (Mν)ee and can be written as follows:

Aν ∝ G2
F

(Mν)ee
k2

(2.29)

where k ∼ 100 MeV is of the order of the Fermi momentum of the nucleus and may be

considered a measure of the neutrino virtuality. The absolute value of (Mν)ee is plotted

in Figure 2.6 as a function of the lightest neutrino mass [65]. The indeterminacy of the

Majorana phases is causing the slight dispersion of the points. Current experimental

constraints on the decay rate translate generically into [16]:

(Mν)ee . eV (2.30)

Recently a strong limit from searches on 136Xe has been reported in [66]:

(Mν)ee . (0.140− 0.380)eV (2.31)

up to the uncertainty of the nuclear matrix elements.

One may attempt to draw some premature conclusions from Figure 2.6 without con-

sidering possible new physics effects. For example, one may conclude that the hierarchy of

light neutrino masses can be probed by 0νββ. Future experiments on 0νββ with sensitiv-

ity less than 0.1 eV will then be probing the inverted hierarchy. The normal hierarchy still

needs to wait for better sensitivity and in some cases the rate may even vanish completely

because of freedom on the Majorana phases. So the hope for a future observation relies
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Figure 2.6: The canonical contribution form light neutrino masses. The mixing angles are
fixed at {θ12, θ23, θ13} = {35◦, 45◦, 9◦}, while the Dirac and Majorana phases vary in the
interval [0, 2π].

mainly on the inverted hierarchy mass spectrum.

Nevertheless, cosmology is pushing from above the sum of all neutrino masses [68],

which can be translated into the lightest neutrino mass less than ∼ 0.1 eV. This is in

apparent contradiction with the recent limit (2.31). There is also another claim that 0νββ

decay have been seen for 76Ge [67] and that it corresponds to (Mν)ee ' 0.4eV. Together

these three facts can be interpreted as the manifestation of new physics.

In any case, in a complete theory of neutrino masses all the conclusions one can draw

from Figure 2.6 are not necessary valid. The simplest addition of heavy right handed

neutrinos, for example, through the heavy Majorana mass matrix can also produce size-

able rates of 0νββ as was noticed in [69], some years before the seesaw mechanism was

discovered. In short, Figure 2.6 represents only one part of the story.

In general all the physics behind the generation of light Majorana neutrino masses,

provided its scale is not so high, can cause 0νββ. We can estimate the size of this scale.

The operator contributing to the decay rate is of dimension 9, and therefore the new

physics will produce the following amplitude:

ANP ∝ G2
F

M4
W

Λ5
(2.32)
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where Λ is the scale of new physics. When the scale Λ is close to the TeV scale, the

new physics starts competing with the contribution of light neutrinos. In the following

section we analyse the rate produced by the Left-Right model. Specially attractive is the

right-handed neutrino contribution, analogous to the left-handed neutrinos, which goes

through the WR boson instead of the WL boson. In this case the scale Λ will split into

the scale MWR
and mN and the theory produces for mN of few GeV considerable rates of

0νββ.

2.6.1 Decay Rate

One can write the effective Hamiltonian of 0νββ in the following form2:

Heff =− G2
F

k2

(
mee
LLeLe

c
LJ

2
L −mee

RReR e
c
RJ

2
R −mee

LReLγ
µγαγνe cRJ

µ
L k̂

αJνR

)
(2.33)

Here JL, JR denote the left- and right-handed quark currents respectively and k is a con-

stant vector needed to get the right dimension. It is expected to be of the order ∼ 100 MeV

as it is describing the virtuality of light neutrinos. The constant k has been factorized for

convenience in order to have all the coefficients normalized to the canonical contribution.

The diagrams contributing to the effective Hamiltonian are shown in Figure 2.7.

We have omitted few diagrams which are irrelevant. For example, the mixing ξ between

WL-WR does not play any significant role for the substitution of a heavy WR by a light ξWL

will only constraint sin 2β to be smaller than one. This is because the mixing is already

predicted to be small ξ ' M2
W /M

2
WR

sin 2β. We have neglected the contributions coming

from the heavy doublet [70] because the limits on its mass have to be larger than 10 TeV

[71]. The heavy neutrino masses were assumed to lie above the Fermi momentum of the

nucleus which is around 100 MeV, and so the momentum dependence of their propagator

can be neglected . Nevertheless, it can be restored at the end if needed [72].

2Strictly speaking one should not write effective interactions for light neutrinos which are propagating.
But this step will be justified in a moment.
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Figure 2.7: Feynman diagrams contributing to the amplitude of 0νββ. As shown in the
text the mLL amplitude is dominated by light neutrinos. The RR and the LR amplitude
can separately dominate the decay rate.

A straightforward calculation gives the following mLL,mRR and mLR matrices:

mLL = M∗ν −Θ†
k2

MN

1 + 2
MNM

∗
N

m2
∆++
L

Θ∗ (2.34a)

mRR =
M4
W

M4
WR

k2

M∗N

1 + 2
M∗NMN

m2
∆++
R

 (2.34b)

mLR = 2
M2
W

M2
WR

kΘ† (2.34c)

We remind here that Mν ,MN and Θ are the light neutrino mass matrix, the heavy neu-

trino mass matrix and the light-heavy neutrino mixing matrix respectively. The effective

Hamiltonian (2.33) contains only the ee element of the matrices (2.34). The mLL ampli-

tude is composed of three contributions. The first one is the canonical contribution due

to the Majorana masses of light neutrinos. The second happens when each light neutrino

is replaced by a heavy neutrino. The third contribution is due to the doubly charged left
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triplet. The mRR amplitude has heavy neutrinos coupled to the right-handed gauge boson

in complete analogy to the canonical contribution. It also contains the contribution of

the doubly charged right triplet. The mLR amplitude occurs when a heavy neutrino is

converted into a light neutrino.

In deriving (2.34) we did not take into account that the light neutrino masses are

generated by the seesaw mechanism. The seesaw formula (1.42) with MD = MNΘ reads:

Mν = εMN −ΘTMNΘ (2.35)

Inserting this equation in the amplitude mLL we get:

mLL = ε∗M∗N −Θ†

1 +
k2

M∗NMN
+ 2

k2

m2
∆++
L

M∗NΘ∗ 'M∗ν (2.36a)

The last equality is valid when the masses mNi are not exactly of order k.3

In order to proceed with the decay rate, we need to have the value of the following

nuclear matrix elements between the initial and the final nucleus:

〈
J2
L

p2

〉
,
〈
J2
R

〉
,

〈
JµLJ

ν
R

pα

p2

〉
(2.37)

where the momentum p is implicitly being integrated. We define formally the value of k

as the following ratio of matrix elements [11]:

k2 =
〈
J2
R

〉
÷
〈
J2
L

p2

〉
(2.38)

This k is the same in (2.33), physically it is expected to be of the order of the Fermi

momentum of the nucleus. In Table 2.9 we took the matrix elements available in the

literature and checked that the ratio (2.38) is indeed giving the right momentum. It turns

3The case in which the heavy sterile neutrinos contribute substantially to the mLL amplitude through
the light-sterile neutrino mixing [73] requires independent choices of the mixing matrix Θ (or equivalently
of MD) and the heavy neutrino mass matrix MN in order to make ΘTMNΘ smaller than k2ΘTM∗−1

N Θ.
In our case, the left-right symmetry takes over such arbitrariness with Θ given by (1.46).
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ref. 76Ge 82Se 100Mo 130Te 136Xe 150Nd

k in MeV

[75] 99 94 207 102 132 97

[76] 190 186 189 180 280 210

[77] 184 - 193 198 - -

G|Mν |2 in
1

1025 yr× eV2

[75] 4.5 17.3 8.2 21.4 4.7 310

[76] 4.2 16.5 7.7 20.4 4.6 290

[77] 10.8 - 60.8 48.8 - -

Q in MeV [16] 2.039 2.995 3.034 2.529 2.476 3.367

Table 2.9: Nuclear factors relevant for 0νββ.

out that the nuclear matrix element involving left and right-handed currents is suppressed,

see for example [78]. Meaning that the naive estimation is off by one order of magnitude.

The decay rate can then be written as follows:

Γ = G ·
∣∣Mν

∣∣ (|mee
ν |2 + |mee

N +mee
∆ |2 + |mee

Θ |2
)

+ interference terms (2.39)

where G is a phase factor, |Mν | is the nuclear matrix element relevant for the light neutrino

exchange, and with the amplitudes given by:

mee
ν = (V 2

L )iemνi (2.40a)

mee
N =

M4
W

M4
WR

(V 2
R)ie

k2mNi

k2 +m2
Ni

(2.40b)

mee
∆ = 2

M4
W

M4
WR

(V 2
R)ie

k2mNi

m2
∆++
R

(2.40c)

mee
Θ = 2

M2
W

M2
WR

kΘ∗ee (suppressed by ∼ 10−1) (2.40d)

The values G|Mν | for different nuclei are also shown in Table (2.38) together with the

available kinetic energy Q. The interference terms [79] are small due to the difference in
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chirality of the outgoing electrons. They are suppressed by a factor between me/Q and

m2
e/Q

2. The generic bounds arising from the limits on the total decay rate can then be

translated from (2.31):

|(Mν)ee| . 0.3 eV (2.41)

|(MN )ee| & 10 GeV×
(

3.5 TeV

MWR

)4

(2.42)

|Θee| . 4× 10−5 ×
(

MWR

3.5 TeV

)2

(2.43)

From this last limit on the element Θee one can get a rough bound on the elements of the

Dirac mass matrix:

mD < MeV× mN

100 GeV
×
(

MWR

3.5 TeV

)2

(2.44)

In the case of having a nearly diagonal VR ∼ 1, we could then allow mN/m
++
∆R

to be

large and at the same time keep the rates of LFV processes under control. The contribution

of ∆++
R becomes important, specially when the heavy neutrino masses are close to MWR

.

So for VR ∼ 1 we have additionally:

m∆++
R

> 500 GeV×
(

3.5TeV

MWR

)2

×
√

mN1

3 TeV
(2.45)

2.6.2 Implication for the LR scale

The mass of WR can not be arbitrarily large if the new physics is to generate substantial

rates of 0νββ . Here we aim to find maximum value of MWR
that could do that [80]. We

start by analysing the contribution of the doubly charged scalar ∆++
R :

mee
∆ = 2

M4
W

M4
WR

(V 2
R)ie

k2mNi

m2
∆++
R

(2.46)

It can only be dominant when the heavy neutrino masses mNi are large. But the LFV

processes µ→ e+ee and µ→ eγ are proportional to mN/m∆++
R

and, as we have seen, when

mN is large the only way to satisfy the experimental constraints is to have a nearly diagonal
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Figure 2.8: Upper bound from 0νββ due to the doubly charged scalar ∆++
R

right-handed mixing matrix. Figure 2.8 shows the contribution to the mee
∆ amplitude for

different values of m∆++
R

and for a fixed value of mN = MWR
and with VR diagonal. The

limit m++
∆R

follows from direct collider searches and is expected to increase in the near

future, see Table 2.1. If this is the case, and if the direct searches in the collider continue

pushing up the limits on MWR
, we can see that the contribution of ∆++

R will lose space

and may get ruled out before any evidence of 0νββ. In any case this contribution is

complementary to the contribution of the right-handed heavy neutrinos. The scale of the

right-handed boson in any case can not exceed the 5-9 TeV if the rate is to be larger than

0.1eV.

The contribution of the heavy neutrinos becomes important when their masses are

close to k ' 100 MeV:

mee
N =

M4
W

M4
WR

(V 2
R)ie

k2mNi

k2 +m2
Ni

(2.47)

For masses lower and larger than k the amplitude decreases and two values of mN can

give the same amplitude. Figure 2.9 shows the contribution of one N to the mee
N amplitude

for the (VR)eN = 1 which gives the most conservative bound on MWR
. The lower regime

in which mN is lower than ∼ 140MeV is disfavored by cosmology as it is explained below.
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From the figure, we can see that an MWR
of no more than ∼ 10 TeV can still produce large

contribution of 0νββ. However, there is a strong dependence in the mass hierarchy and the

mixing matrix VR analogous to the flavor dependence of the light neutrino contribution.

In principle this rate could vanish itself even with low scale of mN and MWR
.

The contribution due to the light and heavy mixing, is less eloquent, and goes through

the mixing matrix element: Θee:

mee
Θ = 2

M2
W

M2
WR

kΘ∗ee (suppressed by ∼ 10−1) (2.48)

Nuclear physics calculations are giving a suppression to the naive estimation by a factor of

10% (see [78]). The light-heavy neutrino mixing matrix is given roughly by
√
ε−mν/mN

with ε = vL/vR. Thus it becomes important when the vev vL is large and when the masses

of mN are small. In the left frame of Figure 2.10 we show different values of vL with the

mN fixed and large in order not to interfere with vL, in the right frame we fix vL to zero

and see the dependence on light mN . When vL is large compared with MWR
mν/mN there

will be cancellations in the seesaw formula (between type I and type II seesaw). This Θ

contribution points in a direction which is hard to probe experimentally. The LHC can
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Figure 2.10: Upper bound from 0νββ due to the light and heavy neutrino mixing Θ.

indeed test right-handed heavy neutrinos above 10 − 100GeV (lower values will escape

the detector because N will simply not have time to decay). Moreover large mN give a

subdominant contribution because they are already present in the amplitude of mee
N . The

only interesting case is when vL is large. This can in principle be seen at colliders because

the coupling of ∆++
L to the WL boson is through vL. Nevertheless its value is bounded

from above from electroweak precision tests vL . 10GeV.

2.6.3 Cosmological constraints on mN

The cosmological constraint on the masses of the heavy neutrinos requires the life time of

N to be smaller than a second τN . sec. This is needed in order not to ruin the abundance

of light elements and the predictions of the BBN. When mN is larger than the mass of

the pion plus a lepton the decay rate of N into π` will be given by:

Γ(N → `π) =
G2
F fπm

3
N

8π

M4
W

M4
WR

|(V q
R)ud|2|(VR)`N |2

×
[
(1− x2

` )
2 − x2

π(1 + x2
` )
] [(

1− (xπ + x`)
2
) (

1− (xπ − x`)2
)] 1

2

(2.49)

where fπ = 130MeV is the pion decay constant, and xπ,` = mπ,`/mN . In order to satisfy

the cosmological constraint we will need generically the lightest heavy neutrinos heavier
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than the sum of the dacay products:

mN > mπ +m` (2.50)

The precise limit depends on the leptonic right-handed mixing matrix VR. In the case

of having one more heavy neutrinos lower than (2.50) the only way to avoid the over-

closure of the universe is to have them lighter than about few eV [81]. Moreover, if a light

N is coupling substantially to electrons a low scale of WR is disfavoured by supernova

constraints [82]. The problem comes from the amount of energy released by the supernova.

If N is light it will carry a considerable amount of energy unless WR is heavy enough. The

constraint reads [83]:

(VR)eN

(
3.5 TeV

MWR

)
< 0.02 (2.51)

If there is one light N at the eV scale, the other two will have an additional decay channel

open. The decay rate of N into a lighter one is given by:

Γ(Ni → Nj``
′) = 2Γµ

(
MW

MWR

)4(mN

mµ

)5 ∣∣(VR)`i(V
∗
R)`′j + (VR)`j(V

∗
R)`′i

∣∣2 (2.52)

which numerically translates into a bound on the heavier neutrinos:

mN & 140 MeV

(
MWR

3.5 TeV

)4/5

(2.53)

meaning that again the neutrinos in the heavy regime need to have masses above ∼

100MeV.

2.7 Interplay between the LHC and Neutrinoless double

beta decay.

There is a region in the (MWR
,mN ) plane in which the same parameter space is being

explored simultaneously by direct searches at the LHC and by indirect searches on 0νββ
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Figure 2.11: Contours of mee
N in the (MWR

,mN ) plane. Illustrated for large (left frame)
and small (right frame) couplings to the electron (VR)eN .

[80]. The common region is highlighted with a blue ellipse in Figure 2.11. There we show

two different choices of the coupling of the lightest N to the electron. The reach of LHC

is thus covering most of the space in which mee
N is dominating the rate of 0νββ. There is

only a small window with 7 TeV < MWR
< 15 TeV and 300 MeV < mN < 10 GeV in which

we could encounter a large rate of 0νββ due to mee
N , but no sign of WR at the LHC. In

Figure 2.11 we have also shown the theoretical constraint on the mass of MWR
> 2.6 TeV

coming from the right-handed contribution to KL-KS mass difference [29]. From the two

values that mN can have to produce the same amplitude mee
N one of them is disfavored by

cosmology and only those with masses larger than ∼ 100 MeV can contribute to the decay

rate. This increases the chance for searches at the LHC as the same-sign lepton channel

prefers heavy neutrino decaying inside the detector.

2.8 Illustrative example: Type II seesaw dominance

As we have seen, we know nothing about the V+A leptonic mixing angles. There is hope

that LHC can probe the mixing angles together with the heavy neutrino masses. This

will allow a complete reconstruction of the heavy neutrino mass matrix MN . Therefore no

harm will be done by going ahead with a definite mixing matrix. We could, for example,
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imagine to have VR = V ∗L analogous to what happens in the quark sector where the Left-

Right symmetry does imply, up to phases, that V q
R = V q∗

L . Then one would get after some

simplifications the following total decay rate of 0νββ:

Γ0νββ ∝
∣∣(VL)2

eimνi

∣∣2 +
M8
W

M8
WR

∣∣∣∣(VL)2
ei

k2

mNi

∣∣∣∣2 + 4
∣∣ε∣∣ M4

W

M4
WR

(
|VL|2eisi

)2
k2 · 10−2 (2.54)

However, without the right-handed neutrino masses we are only able to draw generic

conclusion. To go a step further, we consider the case in which the light neutrino mass

matrix is generated mostly by ε. This is the so called type-II seesaw scenario. In this case

we have a proportionality between the light and heavy neutrino mass matrices:

Mν ' εMN (2.55)

This automatically implies that the left and right-handed mixing matrices are equal (up

to a complex phase):

VR = ±e−
iθL
2 V ∗L (2.56)
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with θL the spontaneous phase of 〈∆0
L〉. The light and heavy neutino masses are propor-

tional:

mν1

mN1

=
mν2

mN2

=
mν3

mN3

= |ε| (2.57)

To check this scenario, one needs to measure VR,mNi and ε. The last quantity ε will be

tiny and can be translated into a vL of the order of few keV. This vL can allow for the

production of ∆++
L through gauge interaction in colliders. But in any case, if the masses

are proportional and the mixing angles are the same it will be a strong indication in favor

of the type II scenario and not in the general case where these relations are a merely

coincidence.

With the masses and mixing defined as in (2.56) and (2.57), we can then use all the

information available from neutrino oscillations presented in Table 2.2. The only free

variables are then the lightest neutrino mass, the Dirac and the Majorana phases. Also

two kinds of hierarchies are allowed, depending on the sign of ∆m2
13. In Figure 2.12 we

show a numerical analysis for the bound arising from µ→ e+ee, µ→ eγ, muon conversion

in Au, and also the rare leptonic tau decay. The Majorana phases are chosen in such a way

to minimize the rate of all these LFV processes simultaneously. The particular values of

the left mixing angles, specially the large θ13 make the limit arising from µ→ e+ee alone

already very robust. In some points where the Majorana phases can make the branching

ratio small there will be another LFV process with different flavor dependence which put

a limit on mN/m∆++ . However, for degenerate neutrino masses a proper choice of the

Majorana phases can make the LFV rates small enough for any mN/m∆++ .

The decay rate of 0νββ is then given by:

Γ0νββ ∝ |mee
ν+N |2 = (VL)2

ei(V
∗
L )2

ej

(
mνimνj +

M8
W

M8
WR

|ε|2k4

mνimνj

)
(2.58)

where have introduced the the effective mass parameter |mee
ν+N | [11]. This quantity su-

persedes the standard matrix element mee
ν in the parameter space accessible to LHC. In

Figure 2.13 we show |mee
ν+N | for a fixed value of ε as a function of the lightest neutrino
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Figure 2.13: Effective 0νββ mass parameter |mee
ν+N |, a measure of the total 0νββ rate

including contribution from both left and right-handed currents.

mass. The effect of the heavy neutrinos is that of inverting the role of the hierarchies.

Contrary to the canonical light neutrino contribution the new physics has more chance to

occur for highly hierarchical neutrinos. The normal hierarchy being ahead of the inverted

hierarchy in a wide region of the parameter space. The combination of light and heavy

neutrinos implies that the total rate of 0νββ can not vanish for any choice of the Majorana

phases. The upper axis of Figure 2.13 shows the range of the lightest mN . When it is be-

low 100 GeV it would lead to interesting displaced vertices at the LHC [29]. This examples

shows, that 0νββ may be naturally governed by the new physics, and this may eventually

be confirmed by the LHC. Thus it is possible that the light neutrino masses give only a

subleading contribution to the decay rate. This demonstrates that the theorem of [84] in

which a non-zero 0νββ rate can be translated into a non-zero neutrino Majorana mass

has no practical purpose. Another example was provided by the minimal supersymmetric

standard model [85].

2.9 Electron electric dipole moment

A non zero value of EDM will signal the violation of P and T (or CP) symmetry. For a

review see [86]. The experimental constraints for the electric dipole moment of charged
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leptons are shown in Table 2.10. For the electron, the contribution of the Standard Model

appears at 4 loop order with an approximate value of [87]:

dSM
e ' 10−27 e

2me
(2.59)

And thus it is far from being relevant. In the Left-Right model, on the contrary, we

encounter a non-zero value already at the 1 loop level. To perform the calculation we need

the effective interaction l1 → l2γ. For this, we define the vertex Γµ as:

〈f2(p2)|Jemµ |f1(p1)〉 = u2(p2)Γµu1(p1) (2.60)

The conservation of electromagnetic current implies that Γµ depends only in four form

factors:

Γµ =
(
q2γµ − qµ/q

)
(F1 + F2γ5) + iσµνqν(F3 + F4γ5) (2.61)

with q = p1 − p2. When the initial and final particles are the same, the coefficient F3

and F4 are real and correspond to the electric and magnetic dipole moments, respectively.

Using complex quantities, we could write the effective dipole interactions as:

H = ` σµν
[
σγL + σ∗γR

]
`Fµν (2.62)

In that case we have:

d = Re(σ) electric dipole moment (2.63)

µ = Im(σ) magnetic dipole moment (2.64)

We can use the form factors of µ → eγ already calculated in (2.15) and simply take

the imaginary part. There we found that the only complex form factor was given by the

mixed amplitude σLR. This corresponds to the diagram in which the WL boson and the
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charged lepton |d|

e < 1× 10−16 e

2me

µ < 1× 10−6 e

2mµ

τ < 2× 10−2 e

2mτ

Table 2.10: Limits on charged leptons electric dipole moments

heavy neutrinos are propagating in the loop. The rest of the diagrams are real and do not

contribute to the EDM. The amplitude σ was found to be:

σ = σLR = − eGF

4
√

2π2
MNV

∗
RF2(t)V T

R ξΘ (2.65)

The EDM of the electron de is simply the imaginary part of σee, and can be written after

some simplifications in the following way:

de =
eGF

4
√

2π2

M2
W

M2
WR

sin(2β)Im
[
eia(VR)ei(V

∗
L )ejF2(ti)(M

phys
D )ij

]
(2.66)

Similar expression can be derived for the muon and tau leptons by simply replacing the

index e by µ and τ in the formula above. The flavor dependence is controlled by the left

and right-handed mixing angles and also by the neutrino Dirac mass matrix which we

reproduce here for convenience:

Mphys
D = V †RMN

√
ε−M−1

N MνVL (2.67)

Therefore apart from the overall factor sin(2β), which fixes the overall scale of the EDM,

with the data from LHC we could be able to predict the ratio de : dµ : dτ between different

EDM [21]:

dα
dβ

=

∑
ij Im

[
eia(VR)αi(V

∗
L )αjF2(ti)(M

phys
D )ij

]
∑

ij Im
[
eia(VR)βi(V

∗
L )βjF2(ti)(M

phys
D )ij

] (2.68)
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From (2.66) we can write also:

de ' 10−16 e

2me
×
(

3.5TeV

MWR

)2

sin(2β)Im

[
eia(VR)ei(V

∗
L )ejF2(ti)

(Mphys
D )ij

MeV

]
(2.69)

Using the experimental constraint on the electron EDM from Table 2.10 we can see that,

for a WR ' 3.5 TeV, the experiment on the electron EDM are probing Dirac masses of

order:

mD sin(2β) ∼ MeV (2.70)

This complements the limit from 0νββ in (2.44). The additional dependence on β can

be seen from a positive point of view. In principle if de is measured and mN and VR are

determined from the collider, we could predict β as well. It can then be used to determine

dµ, dτ and also the WL-WR mixing angle ξ ' sin 2β(M2
W /M

2
WR

). A direct test of this

mixing would then have to wait for further experiments.

2.9.1 Neutrino dipole moments

For Majorana particles only the transition dipole moments are different from zero. What

happens is that the dipole and magnetic moment of the neutrino are cancelled by equally

opposite moments coming from the antineutrino.

The calculation of the transition dipole moments goes in the same way as before. We

can again make use of the general formulas in [50]. The only difference is in the number of

diagrams. We need the diagrams with neutrinos as well as with antineutrinos. Transition

amplitudes µij and dij are given by [88, 21]:

µij =
3eGF i

16
√

2π2

{
(mνi +mνj ) Im

[
(VL)ki(V

∗
L )kj

]m2
`k

M2
W

+
16

3
m`kIm[ξ(Θ∗V ∗L )ki(V

∗
L )kj + ξ∗(ΘVL)kj(VL)ki]

} (2.71a)

dij =
3eGF

16
√

2π2

{
(mνj −mνi)Re

[
(VL)ki(V

∗
L )kj

]m2
`k

M2
W

+
16

3
m`kRe

[
ξ(Θ∗V ∗L )ki(V

∗
L )kj − ξ∗(ΘVL)kj(VL)ki

]} (2.71b)
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One can check that when i = j these quantities vanish as they should. The nice feature is

that the new contribution is not suppressed by the light neutrino masses. The new physics

through the left-right mixing is expected to dominate over the light neutrino masses by a

factor of roughly:

∼ 1010 sin(2β)Θ

(
3.5TeV

MWR

)2

< 105 sin(2β) (2.72)

Here on the last step, we have used the generic constraint (2.41) from 0νββ on the mixing

matrix Θ. So unless the angle β is very close to zero the dominant contribution will come

from the left-right mixing. However, the experimental limit on the magnetic moment of

neutrinos is rather weak [89]:

µ12 < 10−10 e

2me
(2.73)

and at the present does not provide new constraints. More important, once more we will

be able to predict its value up to the overall factor sinβ with the outcome from LHC on

VR and mN . As we have said in the previous section, if we combine the searches from

LHC with the measurement of the electron EDM we could shed light also on the β angle

and fully predict the neutrino transition dipole moments.
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Conclusion

The left-right model offers a natural answer to one of the most puzzling facts about neu-

trino masses. The smallness of their mass scale is connected with the scale of right-handed

gauge currents. With the lepton number violated in both places we are left with two

complementary manifestations of the Majorana nature of neutrinos, namely, neutrinoless

double beta decay (0νββ) and the KS production of the same-sign charged lepton pairs

at colliders. Both processes will signal the violation of lepton number by two units. But

the low energy manifestation of this large scale in which the parity is restored, can also

show up in 0νββ. We have shown quantitatively in this thesis that it can even dominate

the total decay rate. Moreover, it can do it in the parameter space in which the KS signal

is in turn within reach of the LHC, thus doubling the physical impact of the scale of the

right-handed gauge currents.

Moreover we have also shown how the low scale of lepton flavor violating processes

such as µ → 3e, µ → 3γ and the µ-e conversion in the nuclei, can be used to assist the

searches of the scalar particles and right-handed neutrinos in the collider. For example,

one should expect in general masses of the right-handed neutrinos much below the masses

of the doubly charged scalar particles. This was shown quantitatively for a particular

scenario in which the neutrino masses are generated mostly by the vacuum expectation

value of the left scalar triplet. For the same case, we also illustrated graphically the

interconnection between 0νββ and the KS signal outlined above. We found that the

neutrino mass hierarchy in 0νββ can not be extracted with a simple measurement of the

total decay rate. Obviously this is not the best place to look for oscillation parameters.
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On the contrary, we argued and repeatedly emphasized throughout this thesis, that the

best place to look for the leptonic right-handed mixing parameters is the LHC through

the KS lepton number (and also lepton flavor) violating signal.

In the scenario in which the right-handed neutrino mass matrix is determined from the

LHC we showed that one can in turn predict the coupling of light and heavy neutrinos to

the Higgs boson. We found a definite expression for the Dirac mass matrix depending on

oscillation parameters and high energy collider observables. It was precisely the left-right

symmetry which eliminated the unphysical parameters present in generic type I seesaw,

that allowed us to invert the seesaw formula in favor of the Dirac mass matrix in a definite

way. This is of fundamental importance now that we have entered in the era of the Higgs

boson. The light-heavy neutrino mixing matrix is proportional to the Dirac mass matrix

and therefore, with the outcome of the LHC, one will be able to quantify at the same time

all the low energy manifestation depending on this small mixing.
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Appendix A

Scalar Potential

The most general scalar potential invariant under GLR and the C symmetry in which

Φ↔ ΦT and ∆L ↔ ∆∗R can be written as follows:

V =− µ2
1 Tr |Φ|2 − µ2

2 det Φ− µ∗22 det Φ∗ − µ2
3

(
Tr |∆L|2 + Tr |∆R|2

)
+ λ1(Tr |Φ|2)2 + λ2(det Φ)2 + λ∗2(det Φ∗)2 + λ3|det Φ|2

+ (λ4 det Φ + λ∗4 det Φ∗) Tr |Φ|2

+ ρ1

[
(Tr |∆L|2)2 + (Tr |∆R|2)2

]
+ ρ2

(
| det ∆L|2 + |det ∆R|2

)
+ ρ3 Tr |∆L|2 Tr |∆R|2 + ρ4 det ∆L det ∆∗R + ρ∗4 det ∆∗L det ∆R

+ (α1 Tr |Φ|2 + α2 det Φ + α∗2 det Φ∗)(Tr |∆L|2 + Tr |∆R|2)

+ α3(Tr ΦΦ†∆L∆†L + Tr Φ†Φ∆R∆†R)

+ β1 Tr Φ∆RΦ†∆†L + β∗1 Tr Φ†∆LΦ∆†R

+ β2 Tr Φc∆RΦ†∆†L + β∗2 Tr Φc†∆LΦ∆†R

+ β3 Tr Φ∆RΦc†∆†L + β∗3 Tr Φ†∆LΦc∆†R

The minimum of the potential is attain when:

〈Φ〉 =

 v cos b 0

0 −ve−ia sin b

 , 〈∆L〉 =

 0 0

vLe
iδ

 , 〈∆R〉 =

 0 0

vR 0

 (A.1)
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under the conditions that V ′v = V ′b = V ′a = V ′vR = V ′vL = V ′δ = 0. The first four will give us

µ1, µ2, µ
∗
2, µ3 in term of v, vR. Using these values in fifth equation we will find vL ∝ v2/vR.

The sixth equation gives a relation between phases. To get the mass spectrum we can use

the Higgs mechanism, and rotate the charge fields in the following way:


φ−1

φ−2

∆−R

 '


cos b − sin b − MW
MWR

e−ia sin b

eia sin b eia cos b − MW
MWR

cos b

MW
MWR

eia sin 2b MW
MWR

eia cos 2b 1




G−L

H−

G−R

 (A.2)

where G−L and G−R are the unphysical scalars which are absorbed by WL and WR respec-

tively. In the same way, we can rotate the neutral scalars as follows:


Im(φ0

1)

Im(e−iaφ0
2)

Im(∆0
R)

 '
1√
2


cos b − sin b MZ

MZ′

√
c
2W

c2
W

cos b

sin b cos b MZ
MZ′

√
c
2W

c2
W

sin b

− MZ
MZ′

√
c
2W

c2
W

sin 2b 0 1




G0
L

H0
φ

G0
R

 (A.3)

where the G0
L and G0

R, are the unphysical scalars absorbed by Z and Z ′ respectively. In

Table A.1 are show the masses of all the physical scalars. The heavy doublet Hφ is mostly

ϕ2, which is the notation used in the text.
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Original field Physical field mass quared

Light doublet h0
φ v2

[
4λ1 + (λ3 + Re(λ2e

−ia)) sin2 2b− 2Re(λ4e
−ia) sin 2b

]

Heavy doublet

H0
φ α3v

2
R sec 2b+ v2

(
λ3 + Re(λ2e

−2ia)
)

cos2 2b

A0
φ α3v

2
R sec 2b+ v2

(
λ3 − Re(λ2e

−2ia)
)

H+
φ α3v

2
R sec 2b+ α3v

2 cos 2b

Left triplet

H0
L (ρ3 − 2ρ1)v2

R

A0
L (ρ3 − 2ρ1)v2

R

∆+
L (ρ3 − 2ρ1)v2

R + 1
2α3v

2 cos 2b

∆++
L (ρ3 − 2ρ1)v2

R + α3v
2 cos 2b

Right triplet
H0
R 4ρ1v

2
R

∆++
R ρ2v

2
R + α3v

2 cos 2b

Table A.1: Physical scalar particles
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Appendix B

The square root of a matrix

Here we follow the method of [91]. To find the square root of a matrix A one first needs

to find the matrix X and J such that:

A = XJX−1 (B.1)

where J is called the normal form of A. The matrix J is a block diagonal matrix made

out of Jordan blocks:

J = diag(J1, · · · , Ji), Ji = λiIi + Ei (B.2)

Here Ii is a diagonal matrix and Ei a matrix which has ones just above the diagonal and

zeros elsewhere, both matrices have the dimension of the block. For non-singular matrices,

the square root of J is given by 1:

√
Ji = λ

1
2
i Ii +

1

2
λ

1
2
−1Ei +

1

2!

1

2

(1

2
− 1
)
λ

1
2
−1E2

i + · · · (B.3)

One needs the first m terms of the series for each m×m block.

1This formula fails when λi = 0 but Ei 6= 0.
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The square root of A is then:

√
A = XY

√
JY −1X−1 (B.4)

where Y is a matrix which commutes with J and contains arbitrary continuous parame-

ters. It can be shown that when all λi are different from each other, the matrix Y has a

block diagonal form and then if it commutes with J it commutes also with
√
J . Therefore

when all λi are different the square root of a n×n matrix contains only discrete solutions.2

We now show focus in some special cases.

• Consider the case the matrix A is diagonalizable. This means all Ei are zero. If all

λi are different from each other (zeros are also possible). The square root is:

√
A = Xdiag(±

√
λ1, · · · ,±

√
λn)X−1 (B.5)

• Roots of the unity matrix. In this case X = 1, J = 1 and Y is an arbitrary matrix.

Then
√
I = Y diag(±1, · · · ± 1)Y . For example in 2 dimensions we have:

√
I2×2 =

 y11 y12

y21 y22


 1 0

0 −1


 y11 y12

y21 y22


−1

=

 a b

1− a2

b
−a


where a = (y11y22 + y12y21)/detY and b = −2y11y22/detY are the independent complex

parameters.

In the same way, in 3 dimensions one has for example
√
I = Y diag(1, 1,−1)Y , and

after some redefinitions one arrives at:

√
I3×3 =

1

a+ b+ c


a −(b+ c)x −(b+ c)y

−(a+ c)x−1 b −(a+ c)x−1y

−(a+ b)y−1 −(a+ b)xy−1 c


2The singular case λi = 0 but Ei 6= 0 does not always have a root but when it does it contains continuous

parameters because Y will not commute with
√
J .
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with a, b, c, x, y arbitrary complex parameters.

In our physical case, we have:

Θ =
√
ε−M−1

N Mν (B.6)

The arbitrary nature of the square root comes from the matrix Y in (B.4) which commutes

with J . If this matrix does not commute with
√
J there will be arbitrary parameters.

We have seen that for non-singular matrices, this would require at least two identical

eigenvalues. But this requirement is far from being physical because even the slightest

perturbation will destroy the degeneracy. The singular case is also disfavoured because ε

is already in the main diagonal and only a perfect cancellations would make the matrix

singular. Therefore, we conclude that the continuous solutions of the square root should

not be taken seriously.

Obviously MD does not have to be perfectly symmetric. It is enough if it is mostly

symmetric. A small asymmetry can always be generated radiatively but provide it is small

our formula is still valid.
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