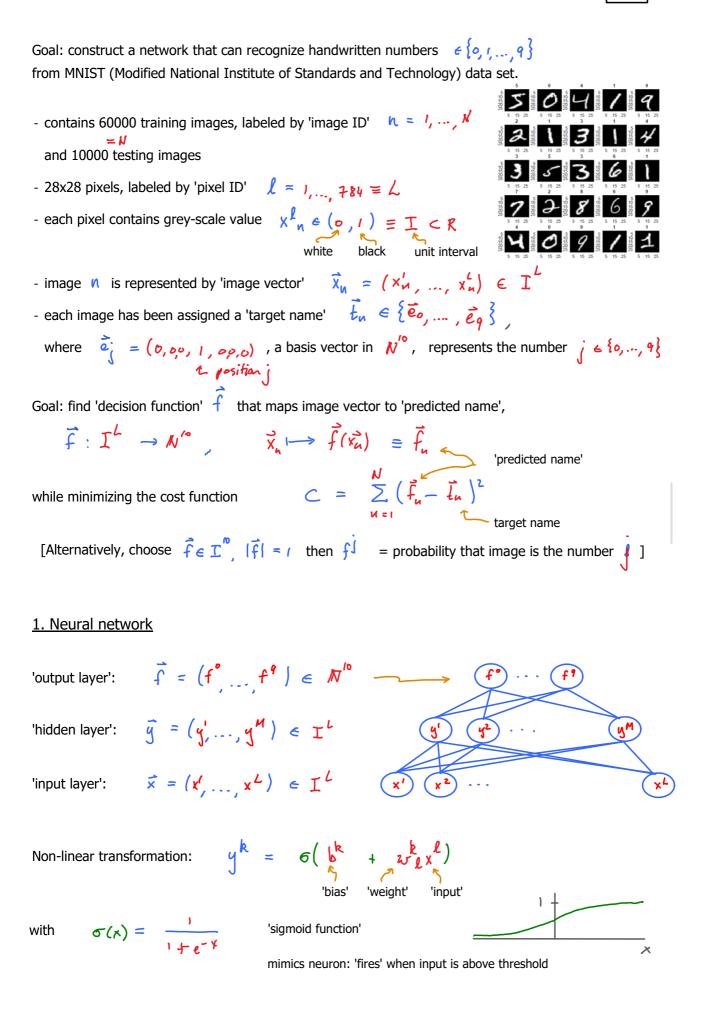
Machine Learning

ML.1



Page 1

 $f^{j} = \frac{e^{(a^{j} + u^{j} \ell y^{\ell})}}{\sum_{i=1}^{9} e^{(a^{i} + u^{i} \ell y^{\ell})}}$ use of exponentials 'soft-max layer': emphasizes largest output at expense of others $\vec{v} = (\mathbf{b}, \mathbf{v}, \mathbf{a}, \mathbf{v})$ are variational parameters, used to minimize \mathbf{C} (e.g. by gradient descent) 'train the network' = 'supervised learning' Multilayer networks (many layers = 'deep learning') All of the above is just one possible Ansatz. output layer: Many others can and have been tried. E.g.: multilayer networks: hidden layers: hope is: will capture hierarchical structure better input layer:

As before, sigmoid functions can be used to map input to output from one layer to the next.

Optimize cost function using gradient descent:

parameters of network

points in direction of steepest descent:

Gradient: $-\vec{\nabla}C = -\left(\frac{\partial C}{\partial v'}, \frac{\partial C}{\partial v'}, \dots\right)$

New variables: $\vec{v}' = \vec{v} - \gamma \vec{\nabla}C$

 \sim 'learning rate' (should be neither too small, nor too large)

 $C = C(\vec{v})$

)

2. Supervised learning with tensor networks

[Novikov2016], [Stoudenmire2017] with Schwab; [Maier2017] Bachelor thesis of David Maier

Goal: construct decision function \vec{f} using a tensor network (here MPS); train network using optimization techniques familiar from DMRG

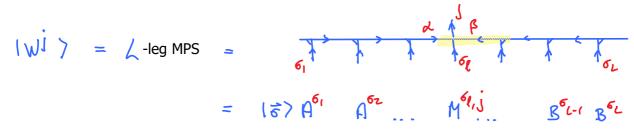
Ansatz:
$$\vec{f}$$
 : $\mathbf{L}^{L} \longrightarrow \mathbf{L}^{(r)}$, (i)
 $\vec{x} \longrightarrow \vec{f}(\vec{x}) \equiv \langle \vec{w} | \mathbf{\xi}(\vec{x}) \rangle$ (i)
image vector predicted name
where right-hand side involves two separate maps:
'feature map' $\mathbf{\Phi}$: $\vec{x} \mapsto [\mathbf{\Phi}(\vec{x}) \rangle$: encodes greyscale input data into \angle -leg MPS, $|\mathbf{\xi}(\vec{x}) \rangle$ (3)
'weight vector' \vec{W} : $|\mathbf{\Phi}(\vec{x}) \rangle \mapsto f^{j}(\vec{x}) \equiv (\mathbf{W}^{j} | \mathbf{\xi}(\vec{x}))$, $j = q_{-1}, q$ (4)
converts feature map into predicted name via inner product with an \angle -leg MPS,
'predicted name': that label j for which f^{j} is maximal.

Feature map: encoding input data
map color range
(0,1) = (white, black)
to quarter-unit-circle,
so that $\langle \varphi(x') | \varphi(x) \rangle = \sum_{\sigma=\pm} \varphi_{\sigma}(x') d_{\sigma}(x) = \begin{cases} l & \text{if } x \approx x' \\ 0 & \text{if } x \approx white, x' \approx black \end{cases}$ (b)
Choose 'snake-ordering' of pixels,
and encode image in a product state MPS:
 $|\mathbf{\Phi}(\vec{x})\rangle = [\varphi(x'), \Theta | \varphi(x^{2}) \rangle \otimes \dots \otimes |\varphi(x^{c})\rangle$ (5)
 $|\mathbf{\Phi}(\vec{x})\rangle = [\varphi(x'), \Theta | \varphi(x^{2}) \rangle \otimes \dots \otimes |\varphi(x^{c})\rangle$ (5)
 $|\mathbf{\Phi}(\vec{x})\rangle = [\varphi(x'), \Theta | \varphi(x^{2}) \rangle \otimes \dots \otimes |\varphi(x^{c})\rangle$ (5)
 $|\mathbf{\Phi}(\vec{x})\rangle = [\varphi(x'), \Theta | \varphi(x^{2}) \rangle \otimes \dots \otimes |\varphi(x^{c})\rangle$ (5)
 $|\mathbf{\Phi}(\vec{x})\rangle = [\varphi(x'), \Theta | \varphi(x^{2}) \rangle \otimes \dots \otimes |\varphi(x^{c})\rangle$ (5)
 $|\mathbf{\Phi}(\vec{x})\rangle = [\varphi(x'), \Theta | \varphi(x^{2}) \rangle \otimes \dots \otimes |\varphi(x^{c})\rangle$ (7)
 $= \sum_{\sigma_{1}} \sum_{\sigma_{2}} \sum_{\sigma_{2}}$

This construction for $|\overline{\Phi}(\vec{x}')\rangle$ is not unique. Other constructions are possible, provided that $\langle \overline{\Phi}(\vec{x}') | \overline{\Phi}(\vec{x}) \rangle$ is a smooth and slowly varying function of \vec{x} and \vec{x}'

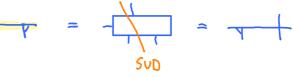
which induces a 'distance matrix' in feature space which tends to cluster similar images together.

Weight vector: encoding pattern recognition

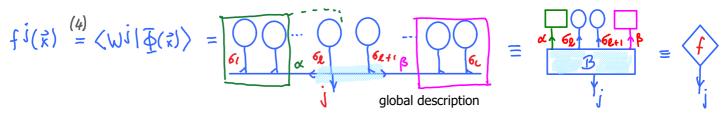


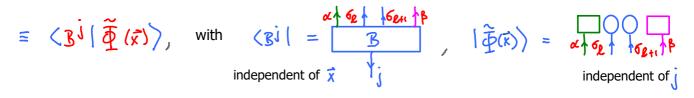
Left-normalized A's, right-normalized B's, sandwiching a 4-leg tensor, M^{\prime} , M^{\prime} , at site ℓ

Top leg can be moved around:



Decision function:

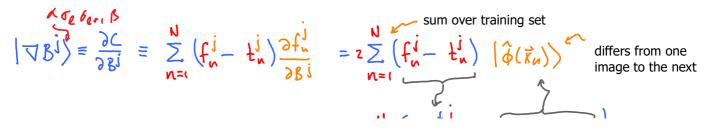


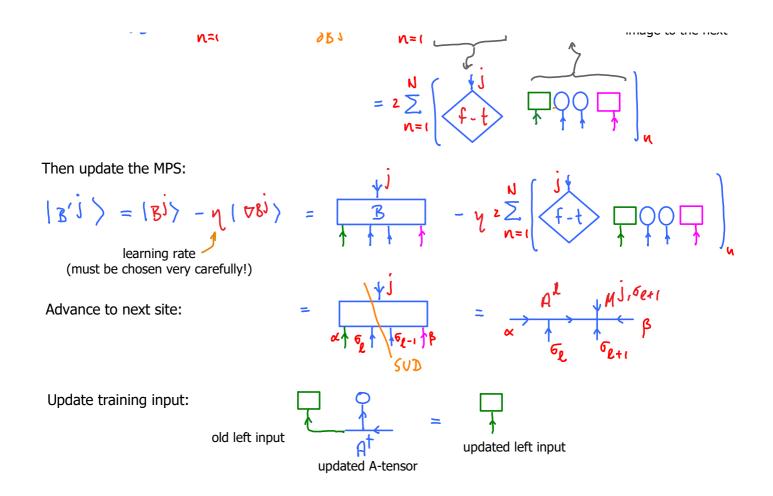


Note: all \vec{x} -dependence resides in $|\vec{a}(\vec{x})\rangle$, all \vec{j} -dependence in $|\vec{b}\rangle$. Location of 'central site' can be shifted (e.g. during sweeping).

Cost function
$$C = \sum_{N=1}^{N} (\vec{f}_{N} - \vec{t}_{N})^{2} = \sum_{N=1}^{N} \left(\vec{f}_{-t} - \vec{t}_{N} \right)^{2} = \sum_{N=1}^{N} \left(\vec{f}_{-t} - \vec{t}_{N} \right)^{2} = evaluated at \vec{x}_{N}$$

For given set of training data $\{\vec{x}_n, \vec{t}_n \mid n = 1, ..., N\}$, minimize C w.r.t. $\langle \vec{w} \rangle$, or equivalently, $\langle \vec{B} \rangle$. Minimize using gradient steepest descent. Compute the gradient:





Sweep back and forth until A-tensors no longer change -- then 'training of network' is complete.

Comments

Costs:

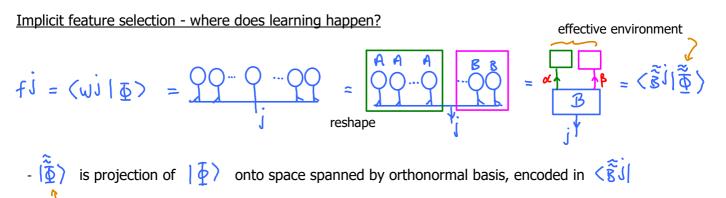
- $\mathcal{O}(d D N \cdot L \cdot \omega)$
- d : physical bond dimension (here: 2)
- : MPS bond dimension (free parameter) \mathbb{D}
- N : number of training images
- L. : number of pixels per image

Once network has been trained, prediction of a new image \vec{x} proceeds simply via

 $f_{j}(\vec{x}) = \langle W^{j} | \Phi(\vec{x}) \rangle$, predicted name is the j yielding maximal f_{j}

MNIST test:

- 28 x 28 was coarse-grained to 14 x 14 (to save resources)
- at most 5 sweeps were needed before training converges
- bond dimension $\mathfrak{D} = \mathfrak{o}$ 5% error rate \Rightarrow 2% error rate 70 0.97% error rate 120 -



has just $\int_{-\infty}^{\infty}$ components

- So, training an MPS model uncovers relatively small set of features, and simultaneously trains decision function using only those features.
- 'Feature selection' occurs when computing SVD: basis elements which do not contribute optimally to bond tensors are discarded

Future prospects

- try tensor networks that are designed for 2D (PEPS, TRG, MERA,)
- explait symmetries try other sampling schemes
- try other sampling schemes
- 'unsupervised learning' with tensor networks
- ...