F-PEPS.1

Fermion signs in 2D fermionic tensor networks can be kept track of using two 'fermionization rules'. [Corboz2009] with Vidal and [Corboz2010b] with Evenbly, Verstrate, Vidal first introduced them, for MERA.

[Corbox2010b] with Orus, Bauer, Vidal adapted them to PEPS context.

This is the approach described in [Bruognolo2017] and presented in this lecture.

Key ingredients: (i) use only positive-parity tensors

(ii) replace line crossings by fermion SWAP gates

Equivalent formulations had also been developed by:

[Barthel2009] with Pineda, Eisert, [Pineda2010] with Barthel, Eisert

[Kraus2010] with Schuch, Verstraete, Cirac

[Shi2009] with Li, Zhao, Zhou

[Bultink2017a] with Williamson, Haegeman, Verstraete, building on [Bultinck2017] (same authors); these papers use the mathematical formalism of 'super vector spaces'.

1. Parity conservation

Fermionic Hamiltonians preserve <u>parity</u> of electron number:

$$\hat{P} = (-i)^{\hat{N}}$$
 (i)

all energy eigenstates are parity eigenstate, too, hence may be labeled by parity eigenvalue:

$$\hat{H}(\kappa,p) = E_{\alpha,p}(\kappa,p)$$
, $\hat{P}(\alpha,p) = P(\kappa,p)$, $p = \pm$ (' \mathbb{Z} -symmetry')

So, we may agree to work only with states of well-defined parity.

Every line in tensor network diagram also carries a parity index.

[When keeping track of abelian symmetries, parity label can be deduced from particle number: p = (-1)

Enforcing **Z**, symmetry [Corboz2010b, Sec.II.F]

To enforce $\mathbb{Z}_{\mathbf{z}}$ symmetry on tensor network: choose all terms to be 'parity preserving'.

Rule (i): Total parity is positive for all tensors:

unleg laws:
$$A_{\alpha_1,\alpha_2,\dots,\alpha_n} = 0$$
 if $P_{\alpha_1,\alpha_2,\dots,\alpha_n} = p(\alpha_1)p(\alpha_2)\dots p(\alpha_n) \neq +1$ (6)
Examples:

 $A_{\alpha_1,\alpha_2,\dots,\alpha_n} = 0$
 $A_{\alpha_1,\alpha_2,\dots,\alpha_n$

$$|N_{\uparrow} = 0, N_{\downarrow}\rangle$$

$$|N_{\uparrow}, N_{\downarrow} = 1\rangle$$

$$|N_{\uparrow}, N_{\downarrow} = 0\rangle$$

$$|N_{\uparrow} = 1, N_{\downarrow}\rangle$$

$$|N_{\uparrow}, N_{\downarrow} = 0\rangle$$

2. Fermionic signs F-PEPS.2

$$c_i c_j = -c_j c_i$$
, $c_i c_j = -c_j c_i$, $c_i c_j = \delta_{ij} - c_j c_i$

To keep track of these signs, we choose an ordering convention, say $1, 2, \ldots, N$, and define:

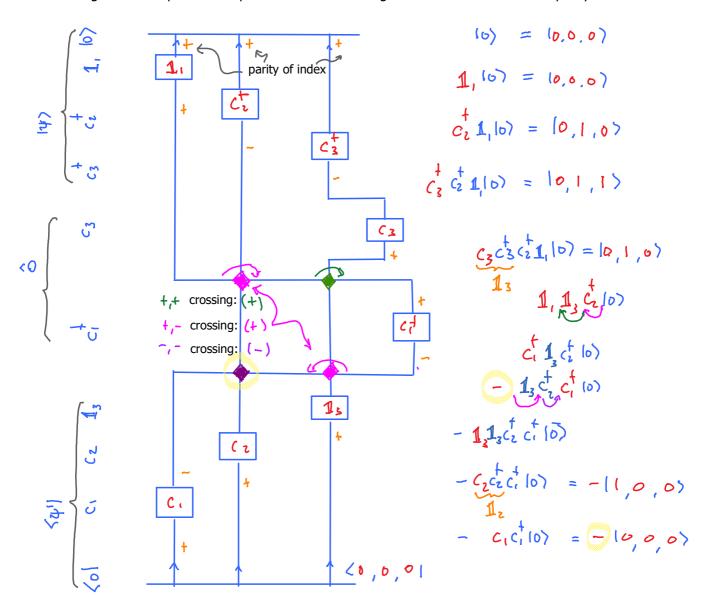
$$| l_1, l_2, \dots, l_N \rangle = + c_N^{\dagger} \dots c_2^{\dagger} c_1^{\dagger} | \underbrace{o_i, o_2, \dots, o_N}_{lo} \rangle$$

We have to keep this order in mind when evaluating matrix elements. Example: consider 1 = 3:

$$|\psi\rangle = |0,1,1\rangle = c_3 \left(\frac{1}{2} |0\rangle\right), \qquad |\psi'\rangle = |1,1,0\rangle = \frac{1}{3} c_2^{\dagger} c_1^{\dagger} |0\rangle$$

$$\langle \psi'|c_1 c_3 |\psi\rangle = \langle 0 | c_1 c_2 c_1^{\dagger} c_3 c_2 c_3 c_2 |0\rangle = -\langle 0 | c_1 c_2 c_2^{\dagger} c_1^{\dagger} |0\rangle = -1$$
Let us repeat this computation in MPS language: [Corboz2009, App. A]

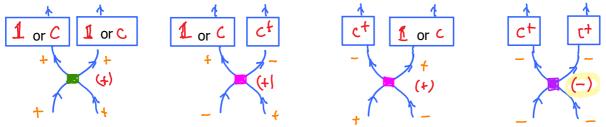
Order of vertical lines, from left to right, indicates order of operators acting on $|\mathfrak{d}\rangle$, from right to left. Horizontal lines show how to move operators in $\hat{\mathfrak{d}}$ (here \mathfrak{c}^{\dagger} \mathfrak{c}_3) into appropriate 'slots' in $|\mathfrak{d}\rangle$ or $|\mathfrak{d}\rangle$. Line crossings indicate operator swaps. An overall minus sign arises whenever two odd-parity lines cross.



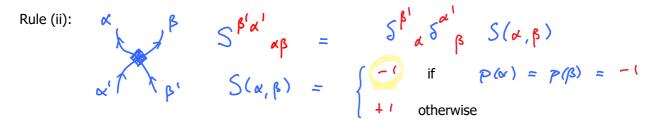
SWAP gates

Line crossings keep track of operator orderings.

(-) needed only for exchanging two lines which both host a fermion, i.e. which both have parity (-).



To encode this compactly, introduce SWAP gate whose value depends on parity of incoming lines.



Operators

[Corboz2010b, Sec. III.F]

Some matrix elements of operators involving fermions need minus signs.

Example: spinless fermions, consider two sites i, , , with local basis

$$|\sigma_i \sigma_i \rangle = \left(\frac{1}{C_i} \right)^j \left(\frac{1}{C_i} \right)^{o_i} |\sigma_i \sigma_i \rangle , \quad \sigma_i \in \{0, 1\}$$

Two-site operator: $\hat{\mathcal{O}} = \sum_{i} \left(\mathbf{c}_{i}, \mathbf{c}_{j} \right) \mathcal{O}^{\mathbf{c}_{i}^{i} \mathbf{c}_{i}^{i}} \mathbf{c}_{i} \mathbf{c}_{j}^{i} \left(\mathbf{c}_{i} \mathbf{c}_{j}^{i} \right)$

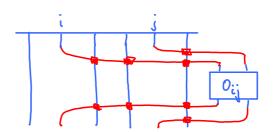
with matrix elements (i2j)

$$O^{\epsilon_{i}^{\prime}} \epsilon_{i}^{\prime} \epsilon_{j}^{\prime} = \langle \epsilon_{i}^{\prime} \epsilon_{j}^{\prime} | \hat{O} | \epsilon_{i}^{\prime}, \epsilon_{j}^{\prime} \rangle = \langle o_{i} o_{j} | (c_{i}^{\dagger})^{\epsilon_{i}^{\prime}} | (c_{j}^{\dagger})^{\epsilon_{j}^{\prime}} \hat{O} | (c_{j}^{\dagger})^{\epsilon_{j}^{\prime}} \hat{O} | (c_{i}^{\dagger})^{\epsilon_{j}^{\prime}} \hat{O} | (c_{i}^{\dagger})^{\epsilon_{j}^$$

Examples:

Pairing:
$$\hat{o} = c_j c_i$$
, $O = c_i c_i c_j c$

When applying such an operator to a generic state, line crossings appear. These yield additional signs, which can be tracked using rule (ii).



Parity changing tensors

and c change parity; but rule (i) demands: use only parity-conserving tensors!

Remedy: add additional leg, with index taking just a single value, $\delta = 1$ with parity $p(\delta) = -1$ which compensates for parity change induced by c^{\dagger} or c:

Total parity:
$$P^{\delta 6}_{j} = p(\delta)p(6_{j})p(6_{j}) = (-)(+1(-) = +($$

$$= (c_i)^{\sigma_i}$$

$$= (c_i)^{\sigma_i}$$
only nonzero element:
$$= (c_i)^{\sigma_i}$$

$$= (c_i)^{\sigma_i}$$

$$= (c_i)^{\sigma_i}$$

$$= (c_i)^{\sigma_i}$$

$$= (c_i)^{\sigma_i}$$

Total parity:
$$P^{\epsilon_i} = P(\epsilon_i) P(\epsilon_i) P(\epsilon_i) P(\epsilon_i) = (-)(\epsilon_i)(-) = +1$$

Two-site operator is represented as
$$c_{i}^{\dagger}c_{j}^{\dagger} = c_{i}^{\dagger}c_{i}^{\dagger}$$

$$c_{i}^{\dagger}c_{j}^{\dagger} = c_{i}^{\dagger}c_{i}^{\dagger}c_{j}^{\dagger}$$

Since δ carries just a single value, a SWAP gate involving crossing of δ -line and physical δ -line can be simplified to a parity operator acting on latter:

$$\frac{1}{p(\sigma)}: \qquad + \qquad - \qquad \hat{p}(\sigma) = p(\sigma)$$

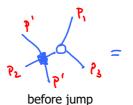
$$\frac{\hat{p}(\sigma)}{\hat{p}(\sigma)}: \qquad + \qquad - \qquad \hat{p}(\sigma) = p(\sigma)$$

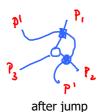
Page 5

F-PEPS.3

Because all tensors by construction preserve parity, lines can be 'dragged over tensors':

(Shorthand: $P(G_i) = P_i$)





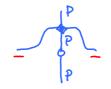
This is trivially true for p' = + l' since then all swap signs are + l'

$$S(p; +) = +1$$

for all

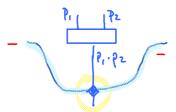
Consider p' = -1:

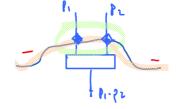
2-leg tensor:



SWAP sign:

3-leg tensor:





SWAP sign:

(21,92)	S(p, p2, -)
+,-	5(-,-) = -1
-,+	S(-,-) = :-1
+,+	5(+,-) = (+)
-,-	S(+,-) = (+)

$$S(\rho_{1}, -) S(\rho_{2}, -)$$

$$S(+, -) S(-, -) = (+)(-) = -1$$

$$S(-, -) S(+, -) = (-)(+) = -1$$

$$S(+, -) S(+, -) = (+)(+) = (+)$$

$$S(-, -) S(-, -) = (-)(-) = (+)$$

General argument: parity-preserving tensor has <u>even</u> number of minus-parity lines:

$$(sign)_{before}$$
 $(sign)_{after}$ = $TS(p_{\alpha})$

$$\prod_{\beta \in \text{after}} S(\beta_{\beta}, -) = (-) =$$

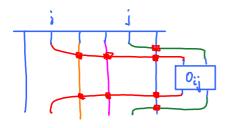
all minus-parity legs cut by before line

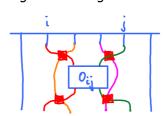
all minus-parity legs cut by after line

total number of minus-parity lines, which is even (4)

→ (sign)_{before}

Jump move allows tensor network diagrams to be rearranged according to convenience:

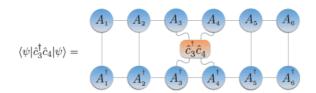


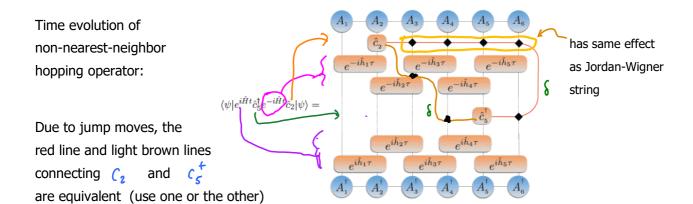


[Bruognolo2017]

F-PEPS.4

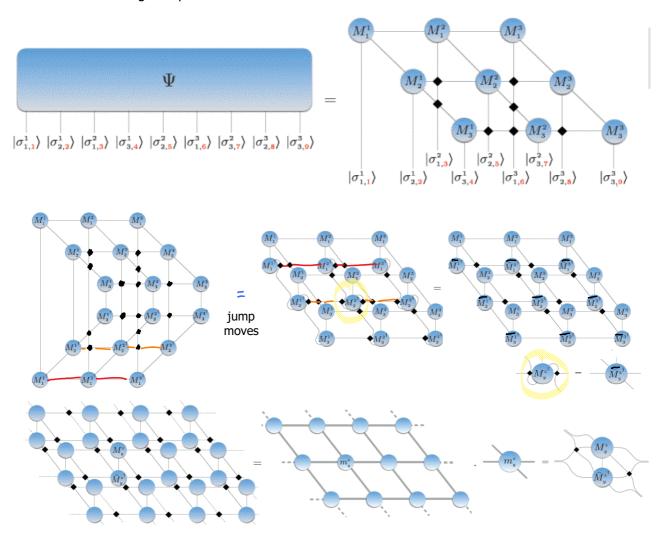
Nearest-neighbor expectation value needs no swap gates:





Fermionic order in a PEPS

Choose some ordering for open indices and stick to it!



Absorbing SWAP gates

