PEPS II: Contraction Techniques PEPS-II.1

PEPS contractions, needed for computing expectation values, are #P hard when performed exactly.
Various schemes for performing PEPS contractions approximately have been and continue to be proposed
(this is a question at the cutting edge of current research). We describe three schemes:

(i) using purely MPS methodology, (ii) using 2D transfer matrices; and (iii) using corner transfer matrices.

1. PEPS via finite-size MPS

Goal: reduce PEPS computations to familiar MPS computations ('reuse code').
[Verstraete2004] (proof-of-principle application: spin 1/2 Heisenberg model on 4x4 lattice)

[Murg2007] Murg, Verstraete, Cirac: (2D hard-core bosons = 2D XY model in uniform field)

Strategy for PEPS ground state search: Trouer:ime;my S~ initial PEPS )
(i) imaginargy time evolution: |t[/&) = e [ q’A 7 (D - Dd 5 0

(i) truncate back to 1D , via variational compression (one tensor at a time) of
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Computation of J\{z ) WZ can be performed by repeated application of MPOs to MPS !

(i) Trotter time evolution [Murg2007, Sec. IV] d i 7 l 1\. -
H = {JS'E + Hf_& + ug + H:_,_,- (() i =
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Apply one such factor to all corresponding bonds: IU(&) = ﬂ_ ¢ ek [ q’.on 7 &)
el

Following bad habit of PEPS literature, we mostly drop arrows in our diagrams below...
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1. Reshape 5-leg PEPS tensors into 3-leg MPS form.
3
2. (suggested by A. Weichselbaum) SVD to project D -dim space onto d (making step 3. cheaper)

2
3. Time-evolve. This causes increase in dimension of central bond from D to Dd .

4. Reshape 3-leg MPS tensors back into 5-leg PEPS form. These define the time-evolved PEPS.
Its central bond dimension must still be decreased, using variational compression in step (ii) below.

Comment: when reshaping, a big D; -space is split into the direct product of 3 smaller 1 -spaces.
This involves much freedom, which should be used to minimize entanglement. That is partially
achieved as a byproduct of the variational compression of (ii), but more direct strategies, involving
'disentanglers' (to be discussed in a subsequent lecture), might lead to further improvements.

4'. To get a good starting point for (i), one may use SVD to truncate central bond from Dd to D .
(Note: performing only this truncation, without subsequently performing (ii), would yield a suboptimal
result, since this truncation includes no information about environment of open legs. By contrast, such
information is included during variational compression (ii), hence the latter is essential.
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(i) Variational compression

[Meng2007, Sec. II]

To compute the overlaps in K , we need objects like

Chal¥e) |, (v, (%)

2
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v ra—” 'double layer PEPS'
A wo L1 11
ie
where EF)’L& = Z ﬂs 56 is 4-leg tensor with bond dimension DL
6

View first and last rows of double-layer PEPS as MPSs, and rows in between as MPOs.

Each application of an MPO increases bond dimension:

D" variational

3 ) .DQ compresszn 2 @

3 S s T T 11
Iteratively apply MPOs. Inlaststep,apply | | | | | toobtain ()
which looks like a contracted MPS.

For @__’f\( one can proceed similarly, but with one A*missing from lower (bra) layer,

gﬂtij and correspondingly some open legs.
In thi te N\ d L then soive /- () for A w
n this manner, compute =~ an , then solve s\l ooy = or -
P [7] @) 1)) (2) fe} -

Sweep until convergence, the converged result yields [ 1{4A) . Then return to (i), with next Trotter gate.

Results for ground state energy [Murg2007]
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FIG. 3. Energy as a function of time for the imaginary time
evolution of the system of hard-core bosons on a 4 X4 lattice. The
evolutions are performed sequentially with PEPS of virtual dimen-
sion D=2, D=3, D=4, and D=5. The times at which D is increased
are indicated by vertical lines. For comparison, the exact ground-
state energy, the exact imaginary time evolution, and the energy of
the optimal Gutzwiller ansatz are included.

Accuracy and numerical efficiency

X
*

x
x

[<N>-14]114

0 0.2 04 t 06 08 1

FIG. 9. Distance K between the time-evolved state and the state
with reduced virtual dimension. The virtual dimensions D=2,
D=3, and D=4 are included. The distance is plotted for the evolu-
tion of a Mott distribution with N=14, as explained in Fig. 8. From
the inset, the deviation of the particle number from the value 14 can
be gathered.

FIG. 4. Energy as a function of time for the imaginary time
evolution of the system of hard-core bosons on a 11X 11 lattice.
The evolutions are performed sequentially with PEPS of virtual
dimension D=2, D=3, D=4, and D=5. The times at which D is
increased are indicated by vertical lines. For comparison, the energy
of the optimal Gutzwiller ansatz is included.

—

(™% for D =3, 4

l<"\\)> "“fl >~ 1o-§

particle number, should be conserved

[computations were performed on a workstation
with 3.0 GHz Intel-Xeon processor]

2 8
Main bottleneck: # multiplications -~ O(l? ) , memory ~ 0(1) )
= 11 x 11 lattice with D=5 took 55 hours for 1 time step, and required 2 GB memory.

'going beyond D=5 is difficult at the moment' (2007).

Bynow, 1D %720 ispossible when exploiting non-Abelian symmetries.
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2. Infinite-size PEPS (iPEPS) PEPS-II.2

[Jordan2008]: Jordan, Orus, Vidal, Verstraete, Cirac, for 2D quantum Ising model

Goal: exploit translational invariance, by borrowing tools from iTEBD.

Strategy: represent entire lattice in terms of just two tensors, A R

% -Hz () 5 (O 5
@ @, )

double-layer PEPS system-environment time-evolved version variational compression

(i) Choose specific bond between two tensors, , (5 forming unit cell.

Compute 'environment’, % ( A,B) built from fq, B too, using transfer matrix tools and iTEBD.
(ii) Perform imaginary time evolution on specified bond between active sites, Q(B — ﬁ , g
(iii) Use variational compression, involving ﬁ/ E/ j/rq,s) , to compress 27“,2' down to Q" B/’

Then move to next bond and iterate...

Overall structure

Exploit translational invariance:

Use two-site 'active' unit ceII,.~

{ ]
for bipartite covering of lattice.

Then iPEPS depends on (9 d D¥ )

FIG. 1 (color online). Diagrammatic representations of (a) a

coefficients. PEPS tensor Ag,,, with one physical index s and four inner
indices u, d. [ and r; (b) local detail of the tensor network P for
Single-layer iPEPS: P (H' _E) an iPEPS. Copies of tensors A and B are connected through four
types of links: (¢) reduced tensor a of Eq. (2); and (d) local detail
Double-layer iPEPS: g (4, $> of the tensor network £.

(i) Contract out environment for specified bond

e.g. bond r

Approximate the double-layer iPEPS, g,
by an infinite strip,

F - ]—_(c/ D/c‘/D'/«/L) @)

(either horizontally, vertically, or diagonally),
surrounding the active sites.
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(either horizontally, vertically, or diagonally),
surrounding the active sites.

. . 'z s ' o
Approximate strip by ‘environment’, FIG. 2 (color online). The environment £71:7] for a link of
encoded in six E-tensors, type r is first approximated by an infinite strip FUr"2) and then

by a six-tensor network GUFt721. These reductions can be per-
_ ( N £ (3) formed according to either a vertical or horizontal scheme (b) or
L, -y A a diagonal scheme (c). Tensors A, A*, B, and B* are not part of

the environment.

Computation of strip f using transfer matrix methods I

{
Define transfer matrix, R, built from two infinite rows of a, b: R i
1
[ ]

Compute its dominant right eigenvector, \@ > : *

g = 3\|EE>/ (s

then [$D = 0000 ) ;
I
represents entire 'upper half plane' (above active sites). -

? 1% o900
In practice: |3y = (o R 13.) ©)

p— “ RP , 505\\ cost: (9(9(3'06 F ')("' ng )

~Ht
is computed using iTEBD methods, with k instead of ¢ as 'evolution' operator.

Similarly: compute dominant left eigenvector, CBIR = A<F| *

then <dZ\ = _é_@_@_(b_ represents lower half-plane. @

Next, define transfer matrix S from
the six tensors a, b, C, D, C', D":

Compute its dominant left eigenvector, <SU

AIS =3¢l o =
then <Su = C)é-_ represents left part of strip. («9

t
Similarly, compute its dominant right eigenvector, 5 l&) = ’A I«R) p )

then [J1) = E@ represents right part of strip. ()

I
@ o
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Construction of E-tensors representing environment (e.g. for r-bond)

O—O-@-®
) G2l &

D>
RIRIL L

o

e

Note: 'open up' those double-legs from double-layer tensors
a,b(andC, D, C', D', X, X') which are connected with
single-layer tensors A, B, A*, B*.

Thus, environment (computed from ﬂ,g ) is represented by

S(E"EL' E‘gl EQ,ES,BG) = j(X,C, .D’ X'; -D: CI) ('53

(i) Imaginary time evolution of active basis sites

H = H + H, + Hx+ He ue)
KT - e-”ut &—#.,(‘C HeT
—_— (I?)

-4

1 (3

(PEPSILLE) Dbo(z:? § (9
: (
o(j o

31. = T{-C

8\'gate' acting only on a left-leg

\”"‘:‘

product over all left legs

Time-evolve, e.g. for r-bond:

A

o
(i) Compress A & to A R via variational compression
4 g

Finding new tensors, ﬁ‘, 5' (with bond dimensions D ), which maximize overlap with time-evolved state.

E
variationally
maximize

overlap:

compressed time-evolved
version state
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The updated A', B' define the new iPEPS. Move to next bond, and iterate steps (i) to (iii) until convergence.

- 'Full update': recompute environment after each time step (most accurate, most expensive)

- 'Fast full update': use same environment for several time steps (less accurate, faster)

- 'Simple update': don't compute full environment, but approximate it using bond tensors
(least accurate, but often still reasonable, by far the fastests)

Results for transverse field Ising model [Jordan2008]
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FIG. 4 (color online). (a) Transverse magnetization m, and o5 : s 5 = E
energy per site e as a function of the transverse magnetic field e

h. The continuous line shows series expansion results (to 26th
and 16th order in perturbation theory) for /i smaller and larger
than i, = 3.044 [13]. Increasing D leads to a lower energy per

FIG. 5 (color online). Magnetization m_(A) as a function of the
transverse magnetic field A. Dashed lines are a guide to the eye.
We have used the diagonal scheme for (D, y) = (2, 20), (3,25)

site ¢. For instance, at i = ‘ LeD=2) == 1.6417 and ‘)(A]? = and (4.35) [15] (the vertical or horizontal scheme leads to
3) = —1.6423. (b) Two-point correlator S_.(/) near the critical comparable results with slightly smaller y.) The inset shows a
point, A = 3.05. For nearest neighbors. the correlator quickly log plot of m, versus [A — A.[, including our estimate of A, and
converges as a function of D. whereas for long distances we . The continuous line shows the linear fit.

expect to see convergence for larger values of D.
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3. Corner Transfer Matrix (CTM) [more sophisticated version of iPEPS] PEPS-II.3

Goal: more efficient comutaion of environmnt tensor; flexible unit cell.

[ O e S - Figures from
wen e N N i g M._;ﬁ " [Bruognol02020]
e » o o @8 @ m;,mo,
=

-~m~—- .~ M - @ M
i £ £ 4 G, m ‘m Zili

Original idea of 'corner transfer matrix': [Baxter1968], [Baxter1978]

First application in tensor-network context: [Nishino1996], with Okunishi: 'corner transfer RG'
In PEPS context:

[Orus2009], with Vidal: proof-of-principle for 2D quantum Ising model

[Corboz2010], wih Jordan, Vidal: spinless fermions with nearest-neigbor interactions; t-J model
[Corboz2011], with White, Vidal, Troyer: stripes in t-J model

[Corboz2014], with Rice, Troyer: t-J model (competitive results!)

[Ponsioen2019], with Chung, Corboz (extended 2D Hubbard model)

[Bruognolo2020], with Li, von Delft (PEPS review for beginners) [notation of this review is used below]

Notation

local tensor conjugate local tensor
- m " o
\lq,) = ; i V
PR Lo @B 8 Ml
ﬁ ﬁ m hflggy] _ g ﬂj[a,ﬁ'yp = &
& My, = i
o) el o) -n:>\<
2 TR 159 T 54 N 12 W T T
il Al tedl Aol (@3l (el contracting out physical indices
(@3l (el | (ol
e @ .= -
(’l}l = < - @ % B 7 \(W{"ﬁ")
o P o ' r\ﬂ’ N  (aa) @(33’)
2 & W -3 = o 3 - .\.: ot \
P ™ fﬁ’ / (pp')
" m " detail relevant
for fermions:
m ® @ -
i M r
(Wly)y =
w i i "
- ) - L s - - . kG
A il
= ~ Ji@ L e L L m -
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Variable unit cell [Corboz 2011] For systems with spontaneous symmetry breaking,

one needs to vary size of unit cell, to accommodate

various types of order...
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FIG. 4. (Coloronline) Examples of stripes running in the vertical

compatible with antiferromagnetic order direction obtained from various iPEPS simulations. Each panel shows
one unit cell of the infinite lattice. The diameter of the dots scales
with the local hole density with average values given by the (upper)
red numbers. The arrows represent the local magnetic moment with
average magnitude given by the (lower) black numbers. There is a
m-phase shift in the antiferromagnetic order between adjacent stripes.
The width of a bond between two sites scales with the (singlet) pairing
amplitude on the bond with a positive (green/dark gray) or negative
(cyan/light gray) sign. A pattern with predominantly d-wave order

- is visible, with maximal pairing amplitude 0.01, 0.03, and 0.003 in

6-site
unit cell:

could begin to show onset of striped order

Corner transfer matrix approach: main idea

Represent environment of 2x2 'zooming window' in terms of 12 terms:

8 transfer tenors (T's), 4 corner tensor (C's). [Here: 2x2 unit cell. Generalization to larger ones is straightforward]
Bond dimensions: D
%z . 2 X X X
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CTM coarse-graining move: insertion to the left

) P
Instead of %« R @,b , repeatedly: (i) insert unit cell, (ii) absorb row, (iii) renormalize
1"~} T

(i) insertion of extra unit cell + T's

CTM coarse-graining move: insertion at the top

(1) insertion of extra unit cell  + T's

identical
\/\/?
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One 'cycle' = insertion/absorption/renormalization at left, top, right, bottom.

Repeat cycle numerous times until convergence (e.g. of local observables).

There is no clear 'optimal way' to perform the renormalization, due to lack of a canoncial form.
Trial and error, room for creativity!
see [Orus2009], [Corboz2010a], [Corboz2014-Supplement] = [Bruognolo2020]

Optimization of M-tensors in zoom-window

Most PEPS-workers use Trotter imaginary-time evolution, as proposed in [Jordan2008] for iPEPS.

- -tH
l\[/‘) = ,’f;'“" e [y Factorize ¢~ <" into
e u nearest-neighbor two-site gates, etc.
Vel

After application of Trotter gate to a bond, truncation ('bond projection") is needed. Two options:

- full update, using CMT environment [most accurate, but computationally expensive]

- simple update, in spirit of iTEPD, with AT treatment of neighboring bonds
[less accurate (with systematic errors), much cheaper!]

Iteration scheme:
- start from random PEPS
- initally use large time steps, small bond dimensions

-5
- gradually reduce time steps when SVD spectra converge, down to S"C x [

Side remarks:
- Longer-ranged interactions are also possible. [Corboz2010], [Corboz2013]

- Alternative approaches: variational optimization of

Y H Ty [Corboz2016],
[Vanderstraeten2016] 'gradient method'
el Yoy
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