PEPS 1: Projected Entangled Pair States

(Verstraete, Cirac, 2004)

PEPS-I.1

- Contraction costs would become manageable if a 'canonical form' were available!

But this has not been explored systematically until recently.

- 'No exact canonical form exists' [Orus2014, Sec. 5.2] (but this claim might be outdated...)
- Restrictions to canonical forms are possible and probably useful. [Zaletel2019], [Hagshenas2019]

2. Example: RVB state

Resonating valence bond (RVB) states are of continued interest for constructing spin liquids. [Anderson1987], [Rokhsar1988] (high-Tc context)

Canonical example: spin-1/2 Heisenberg model on square lattice

'Dimer' or 'valence bond':

 $= \frac{1}{J_2} \left(| \uparrow_{\boldsymbol{\ell}} \downarrow_{\boldsymbol{\ell}} \rangle - | \downarrow_{\boldsymbol{\ell}} \uparrow_{\boldsymbol{\ell}} \rangle \right)$

PEPS-I.2

(3)

(9)

 $\int_{1}^{1} \left(\int_{1}^{1} \frac{1}{J_{z}} \left(\int_{1}^{1} \frac{1}{J_{z}} \left(\int_{1}^{1} \frac{1}{J_{z}} \right) - \int_{1}^{1} \frac{1}{J_{z}} \left(\int_{1}^{1} \frac{1}{J_{z}} \right) \right)$ (1)

[sign conventions for bonds are needed and important]

(RVB) = (equal superposition of all possible dimer coverings of lattice)**RVB** state: (2)

[Verstraete2004d], [Verstraete2006]

VB fluctuations lower energy due to Hamiltonian matrix elements connecting different configurations.

 $\left(\frac{1}{4} \right) \left| H \left(\frac{1}{4} z \right) \neq 0$

RVB	state	has a	а	PEPS	re	presentation

Defining properties of RVB state:

- each vertex has precisely one dimer attached to it, so it can be involved in one of four possible states:

- introduce four auxiliary sites per physical site,

each in one of the states

 $|\alpha\rangle \in \{|e\rangle, |\uparrow\rangle, |\downarrow\rangle \}$ 'empty' up down

- impose constraint: allow only one auxiliary spin-1/2 per physical site, and identify it with physical spin:

only nonzero elements of A -tensor:

(4) 1 apps > (5)

Advantages of PEPS description of RBV state

- PEPS description can be extended to larger class of states, e.g. including longer-ranged bonds [Wang2013]
- 'Parent Hamiltonian' (for which RVB state is exact ground state) can be constructed systematically, but it is complicated: 19-site interaction [Schuch2012], 12-site interaction [Zhou2014]

PEPS-I.3

Simplest known model whose ground state displays topological order. Ground state on torus is four-fold degenerate, hence it can be used to define a 'topologically protected qubit'.

Spin flips of plaquette operator are 'ergodic', i.e. any closed loop $|\vec{\sigma}\rangle$ can be mapped to any other $|\vec{\sigma}\rangle$ closed loop by a series of plaquette operators. Hence, <u>all</u> \vec{c} must be equal:

PEPS representation: [Verstraete2006] the local variable $\sigma = \pm 1$, r is represented by $\sigma = \pm 1$, r (17)

19-lecture-PEPS-I-DefinitionExamples Page 6

So, plaquette operator creates two 'vortices', at p_1 and p_2 , each having energy $2\int_{1}^{2}$, (28)

Toric code on torus

Let L_i and L_2 be 'global loops' wrapping around surface of torus, along the spin locations (i.e. between edges)

$$\hat{R}_{L} = \prod_{\ell \in L} \hat{G}_{\ell}^{\ell}$$
, $L = L$, or L_{2}

Possible eigenvalues: $a_{L_1} = \frac{1}{2}i$, $a_{L_2} = \frac{1}{2}i$

Any plaquette cuts L_1 and L_2 either \circ or \sim times, i.e. flips an <u>even</u> number of spins, hence $\begin{bmatrix} \hat{B}_{P_1} & \hat{A}_L \end{bmatrix} = \circ$

So, ground state(s) are also characterized by their α_{L} -eigenvalues:

$$\hat{A}_{L_1}$$
 $|g, a_{L_1}, a_{L_2}\rangle = \alpha_{L_1}|g, a_{L_1}, a_{L_2}\rangle$,

 \Rightarrow there a

there are \boldsymbol{l} degenerate ground states

topological property!

 \Rightarrow

;

 $\hat{A}_{L_2} | g, a_{L_1}, a_{L_2} \rangle = a_{L_1} | g, a_{L_1}, a_{L_2} \rangle$

$(\hat{A}_{s}, \hat{A}_{\iota})$	20
(H, Â.)	20

