1. Motivation \& Definition of PEPS

Goal: generalize MPS ideas to 2 dimension!
Most obvious idea: 2D-DMRG, using a 'snake-MPS':
[White1996] (2D Heisenberg, in \& mn interactions)
[Stoudenmire2012] (brief review)
[He2016] (2D Kagome)

[Zheng2017] (recent high-end application: striped order in 2D Hubbard model)

2D-DMRG is one of the most powerful/accurate methods for studying 2D quantum lattice models.
Main limitation: not enough entanglement: entanglement entropy $S_{A B}^{m p s} \sim O\left(\ln z_{2} D\right)$ but according to area law, we need $S_{A B} \sim N_{x} \Rightarrow D \sim 2^{N_{x}}$ Reason for insufficiency: entanglement between A and is encoded in a single bond.

Natural generalization: add more bonds between rows! This leads to PEPS Ansatz [Verstraete2004]: Introduce ${ }_{\ell}^{5-l e g} u$ tensor for every site:

ri
dr

Sum over all virtual bonds linking neighboring sites:

$|\psi\rangle=\sum_{\text {PEPS }}\left|\vec{\sigma}_{\ell \ell^{\prime}}\right\rangle \prod_{l \ell^{\prime}} A_{\left[l \ell^{\prime}\right]}^{\cdot^{\sigma_{l \ell \prime}}}$
physical basis: $\left|\vec{\sigma}_{\ell R^{\prime}}\right\rangle \equiv\left(\sigma_{N_{R} N_{y}}\right) \otimes\left(\not . \ldots \mid \sigma_{21}\right) \oplus\left(\sigma_{11}\right)$
contraction pattern:

Variationally minimize $\langle\psi| \hat{H}(\psi)$. \# of variational parameters: $O\left(d D^{4} \cdot N_{y} N_{y}\right)^{<c} d^{N_{r} \cdot N_{y}}$
Why the name 'PEPS'? Verstraete \& Cirac envisioned generalization of AKLT construction:
Associate 4 'auxiliary particles' with each site: $\left.\left.\left.|\alpha \beta \gamma \delta\rangle_{l} \frac{\alpha}{\sigma_{0} \phi_{\gamma}^{\beta} \delta}=|\alpha\rangle_{\ell, \ell^{\prime}}^{\beta} \right\rvert\, \beta\right)^{n}(\nabla)|\gamma\rangle^{\alpha} \times 1 \delta\right)^{\gamma}(3)$

Construct entangled pairs along bonds: $|E P\rangle, \stackrel{e . g . e^{\prime}}{=} \sum_{\gamma=1}^{D}|\gamma\rangle_{\ell, \ell^{\prime}}^{d}|\gamma\rangle_{\ell, \ell^{\prime}+1}^{u}$ Define projectors on each site: $\quad \hat{P}_{\ell \ell^{\prime}}=|\sigma\rangle_{l, \ell^{\prime}} A_{\left[l, \ell^{\prime}\right]}^{\sigma} \bar{\alpha} \bar{\beta} \bar{\delta} \bar{\delta}\langle\bar{\alpha} \bar{\beta} \bar{\delta} \bar{\delta}|$

(5)

General remarks:
[Orus2014, Sec. 5.2]

- PEPS are'dense': any 2D state can be written as a PEPS, though possibly with exponentially large D
 If no truncations are performed:
$\begin{aligned} \Rightarrow \quad d D_{1} D_{2} & =D_{3} D_{4} \Rightarrow \quad \begin{array}{l}D_{\text {outgoing }}\end{array}=D_{\text {indungig }} \delta \sqrt[d]{ } \\ & D_{\ell \ell^{\prime}} \sim \sqrt{d}^{\ell+\ell^{\prime}}\end{aligned}$
- 2D area law is satisfied: $\quad S_{A B} \sim \mathcal{O}\left(N_{x} \ln 2 D\right)$
- PEPS can handle polynomially-decaying correlations (in contrast to 1D MPS)
- Exact contraction is \#P hard, \Rightarrow contraction time $\sim O\left(e^{N_{y} N_{y}}\right)$
$\left[\begin{array}{l}\text { \#P-hard class of problems }=\text { count number of solutions of NP-complete problems } \\ \text { NP-complete class = problems that cannot be solved in polynomial time }\end{array}\right.$
Why are exact contractions hard? Recall 1D situation:

Cheap contraction pattern:

\# of open indices

$$
\left.\begin{array}{ll}
\operatorname{cost}: & O\left(D^{2} \cdot d\right) \\
& O\left(d \cdot D^{2} \cdot D\right) \\
& O\left(D^{2} \cdot d D\right)
\end{array}\right\}-O\left(d D^{3} N\right)
$$

Expensive contraction pattern:

\# of open indices
$\left.\begin{array}{rl}\text { cost: } & O\left(d^{2} D \cdot D\right) \\ & O\left(d^{3} D \cdot D\right) \\ & O\left(d^{4} D \cdot D\right)\end{array}\right\} O\left(d^{N} D^{2}\right)$

Moreover, if canonical form is used,
then contraction costs are very small:

In 2D, growth of \# of open indices is unavoidable: open indices: 344 s just keeps growing...
$=$

- Contraction costs would become manageable if a 'canonical form' were available!

But this has not been explored systematically until recently.

- 'No exact canonical form exists' [Orus2014, Sec. 5.2] (but this claim might be outdated...)
- Restrictions to canonical forms are possible and probably useful. [Zaletel2019], [Hagshenas2019]

Resonating valence bond (RVB) states are of continued interest for constructing spin liquids.
[Anderso n1987], [Rokhsar1988] (high-Tc context)
Canonical example: spin-1/2 Heisenberg model on square lattice

'Dimer' or 'valence bond':

$$
\begin{equation*}
l_{l^{\prime}}^{\ell}(\eta)=\frac{1}{\sqrt{2}}\left(\left|\tau_{l} \downarrow_{l^{\prime}}\right\rangle-\left|l_{l} \tau_{l^{\prime}}\right\rangle\right) \tag{1}
\end{equation*}
$$

[sign conventions for bonds are needed and important]
RVB state: $\quad|R \cup B\rangle=\begin{gathered}\text {-where } \\ \text { (equal superposition of all possible dimer coverings of lattice) }\end{gathered}$
VB' fluctuations' lower energy due to Hamiltonian matrix elements connecting different configurations.

$+$

$+\ldots$
(3)

$$
\left\langle \#_{1}\right| H\left|\mathbb{H}_{2}\right\rangle \neq 0
$$

[Verstraete2004d], [Verstraete2006]
Defining properties of RVB state:

- each vertex has precisely one dimer attached to it, so it can be involved in one of four possible states:

(4) - introduce four auxiliary sites per physical site, each in one of the states $|\alpha\rangle \in\left\{\begin{array}{l}|e\rangle,|\uparrow\rangle, ~|\downarrow\rangle\} \\ \mid e m p t y ' ~ u p ~ d o w n ~\end{array}\right.$

- define 'entangled pairs' using adjacent auxiliary sites from nearest neighbors:

$$
\begin{aligned}
& |E P\rangle_{\left.\ell \ell, \ell^{\prime}\right\rangle}=\underbrace{\left.\frac{1}{\sqrt{2}}\left(\left|\uparrow_{\ell} \downarrow_{\ell^{\prime}}\right\rangle-\left|\downarrow_{\ell} \uparrow_{\ell}\right|\right\rangle\right)}+\underbrace{\left|e_{\ell} e_{\ell}\right\rangle} \\
& \left.\frac{1}{l} \cdot\right|_{\ell^{\prime}} \\
& \text { VB } \\
& \text { no VB }
\end{aligned}
$$

equal-weight superposition of VB or no-VB on bond

$$
\ell=\left(\ell_{x}, l_{y}\right) \text { is } 2 D \text { index }
$$

(b)

- impose constraint: allow only one auxiliary spin- $1 / 2$ per physical site, and identify it with physical spin:
$\hat{p} \quad \frac{1}{7}+\frac{1}{\infty}$
 physical spin VB points left up down right (F) $\equiv \sum_{\sigma_{l}} \sum_{\alpha \beta \gamma \delta} A_{\alpha \beta \gamma \delta}^{\sigma_{l}}\left|\sigma_{l}\right\rangle\langle\alpha \beta \gamma \delta| \quad$ (no arrow convention here) only nonzero elements of A-tensor: $\quad A_{\text {Gee }}^{\sigma}=A_{\text {eve }}^{\sigma}=A_{\text {cere }}^{\sigma}=A_{\text {ere } \sigma}^{\sigma}$
only nonzero elements of A-tensor: $\quad A_{\text {Gee }}^{\sigma}=A_{\text {eve }}^{\sigma}=A_{\text {cere }}^{\sigma}=A_{e e \rho \sigma}^{\sigma}$

Advantages of PEPS description of RBV state

- Dimer basis is hard to work with, since individual components are not orthogonal:

Therefore, explicit computations are easier in PEPS framework!

- PEPS description can be extended to larger class of states, e.g. including longer-ranged bonds [Wang2013]
- 'Parent Hamiltonian' (for which RVB state is exact ground state) can be constructed systematically, but it is complicated: 19-site interaction [Schuch2012], 12-site interaction [Zhou2014]

Simplest known model whose ground state displays topological order. Ground state on torus is four-fold degenerate, hence it can be used to define a 'topologically protected quit'.

- Square lattice (on 2D plane, or on torus)
- Spin $1 / 2$ on each edge $\quad J_{S}>0, \quad J_{e}>0$
$-\hat{H}=-J_{S} \sum_{s} \hat{A}_{S}$ sum over all stars

spins live on 'edges' of square lattice index ℓ labels edges

$$
-\hat{A}_{s} \equiv \prod_{l \in \operatorname{star}(s)} \hat{\sigma}_{l}^{z} \quad \hat{B}_{p} \underset{\substack{ \\l \in \operatorname{plaquette}(p)}}{ } \hat{\sigma}_{l}^{x}
$$

[note: Kitaev uses $\hat{\sigma}^{x}$ for stars, $\hat{\sigma}^{z}$ for plaquettes]

All terms in Hamiltonian commute

Easy to check:

$$
\begin{equation*}
\left[\hat{A}_{s,}, \hat{B}_{p}\right]=0 \quad \text { for all } s, p \tag{3}
\end{equation*}
$$

because all stars and plaquettes share an even number of edges (or);
hence minus signs from $\quad \hat{\sigma}_{l}^{z} \hat{\sigma}_{l}^{k}=-\hat{\sigma}_{\ell}^{x} \hat{\sigma}_{l}^{z} \quad$ cancel: $\quad(-1)^{2}=(-1)^{0}=$

$$
\begin{equation*}
A_{s} B_{p} \stackrel{?}{=} B_{p} A_{s} \tag{4}
\end{equation*}
$$

- All terms in \hat{H} commute $\Rightarrow \hat{H}$ should be solvable!
- Adopt eigenbasis of $\hat{\sigma}_{l}^{z}$: with eigenstates $\left|\sigma_{l}\right\rangle, \quad \sigma_{l}= \pm 1$
(s)
- Star operator, $\quad \hat{A}_{S}=\pi \hat{\sigma}^{z}$

$$
\ell \in \operatorname{star}(s)
$$

(b)
has eigenvalues $\quad a_{s}= \pm 1 \quad$ 'star flux'
$a_{S}=+1 \frac{1_{+}^{+}}{+\left.\right|_{+} ^{+}}$

If $a_{s}=-1$, there is a 'vortex' on star :
(8)

Ground state of toric code

- Due to (3), ground state must be an eigenstate of every \hat{A}_{s}, \hat{B}_{p},

$$
\begin{equation*}
\Rightarrow \quad \hat{A}_{s}|g\rangle=a_{s}|g\rangle, \quad \hat{B}_{p}|g\rangle=b_{p}|g\rangle \text { for all } s, p \tag{9}
\end{equation*}
$$

- ground state must maximize energy of all \hat{A}_{s}, \hat{B}_{p} terms, $\Rightarrow a_{s}=b_{p}=+1$ (o) Note: $\quad a_{s}=1 \Rightarrow$ all up, or all down, or two up, two down, on every star

Note: $\quad a_{s}=1 \Rightarrow$ all up, or all down, or two up, two down, on every star
(12)

Graphical notation:
 $\square=\square$

Allowed configurations:

Forbidden configurations:
 -1.1. $-1=1$ $\frac{1}{1} \cdot 1$ $+1$
\Rightarrow ground state is 'vortex free', ie. it contains only closed loops of red edge lines
$\Rightarrow \quad|\xi\rangle=\sum_{\text {all closed loops }} C^{\stackrel{\rightharpoonup}{\sigma}}|\vec{\sigma}\rangle$

$$
\begin{equation*}
\left\{\vec{\sigma}: a_{s}(\vec{\sigma})=1 \quad \forall s\right\} \tag{13}
\end{equation*}
$$

- \hat{B}_{p} flips all spins on plaquette, hence maps 'allowed configuration' to 'allowed configuration'.

Since $|g|$ sums over all allowed configurations, the condition $\hat{B}_{p}|g|=(9,10)|g|$ can be satisfied provided that states connected by $\hat{\mathcal{B}}_{p}$ have same amplitude:
if

$$
\begin{equation*}
\left.\hat{B}_{p}|\vec{\sigma}\rangle=|\vec{\sigma}|\right\rangle \tag{14}
\end{equation*}
$$

then
$C^{\vec{\sigma}}=C^{\vec{\sigma}^{\prime}}$
\Rightarrow Along each 'orbit' of the action of plaquette operators, all coefficients must be equal:

Toric code on plane

Spin flips of plaquette operator are 'ergodic', ie. any closed loop $|\vec{\sigma}\rangle$ can be mapped to any other $\left|\vec{\sigma}^{\prime}\right\rangle$ closed loop by a series of plaquette operators. Hence, all $C^{\bar{\sigma}}$ must be equal:

$$
|\bar{g}\rangle=\sum_{\text {all closed loops }}|\stackrel{\rightharpoonup}{\sigma}\rangle
$$

equal-weight superposition of all closed-loop configurations

PEPS representation: [Verstraete2006]
the local variable

$$
\sigma= \pm 1
$$

$$
\xrightarrow[N a n c ̧+13]{\text { is represented by }}
$$

the ıocaı varıadie
$\sigma= \pm 1$
with

$\alpha \frac{\left.D\right|_{\gamma} ^{\beta} \mu}{}$

$$
\equiv\left\{\begin{array}{ll}
1 & \text { if } \alpha+\beta+\gamma+\mu=0 \bmod (4) \\
0 & \text { otherwise }
\end{array}\right\}
$$

[on each vertex: enforce closed-loop condition]
[on each edge: set both auxiliary indices equal to physical index]

Summing over all $\alpha \beta \gamma \mu$ on each vertex generates all possible loop orderings!

$$
|G\rangle=\sum_{\vec{\sigma}}|\vec{\sigma}\rangle \quad \prod_{\ell} C_{[\ell]}^{\sigma_{\ell}} \prod_{s} D_{[s]} \quad \quad \text { [contraction of all auxiliary bonds implied] }
$$

PEPS formulation is generalizable to all 'string-net' models',
which realize all non-chiral topological order in $2+1$ dimensions. [Buerschaper2009]

Excitations on plane

Excitations come in two varieties: (i) 'electric charges', (iii) 'magnetic vortices'.
(i) Define 'electric path operator',

$$
\hat{E}_{L}=\prod_{l \in L} \hat{\sigma}_{l}^{x}
$$

(21) with $L=$ path from S_{1} to S_{2}.
Then $\left[\hat{E}_{L}, \hat{B}_{p}\right]=0$
(since both are built only from $\hat{\sigma}^{\gamma}$) (22)

$\hat{E}_{L} \hat{A}_{S}=\overline{+} \hat{A}_{S} \hat{E}_{L} \quad$ for $\quad\left\{\begin{array}{l}s=s_{1} \text { or } s_{2} \\ \text { otherwise }\end{array}\right.$
[star flips only one spin on path]
[star flips two or zero spins on path]

So, star operator creates two 'charges', at s_{1} and s_{2}, each having energy
$2 J_{5}$

$$
\left.\hat{E}_{L} \mid g\right) \text { has eigunegy } 2 \mathrm{Je}
$$

(i) Define 'magnetic path operator', $\quad \hat{M}_{L}^{*}=\prod_{\ell \in C^{*}}^{\hat{\sigma}_{\ell}^{z}}$
(25)
with $L^{*}=$ path on 'dual lattice' from p_{1} to p_{2}
Then $\left[\hat{M}_{L^{*}}, \hat{A}_{S}\right]=0$
(26) (since both are built only from $\hat{\sigma}^{z}$)

$\hat{M}_{\star} \hat{B}_{p}=+\hat{B}_{P} \hat{M}_{L_{*}} \quad$ for $\quad \begin{cases}P=\rho_{1} & \text { or } \quad \rho_{2} \\ \text { otherwise } & \quad \text { [plaquette flips only one spin on path] } \\ \text { [plaquette flips two or zero spins on path] }\end{cases}$

So, plaquette operator creates two 'vortices', at p_{1} and p_{2}, each having energy $2 J_{e}$.

Toric code on torus

Let L_{1} and L_{2} be 'global loops' wrapping around surface of torus, along the spin locations (i.e. between edges)

For given L_{1} and L_{2}, define the 'global loop operators'

$$
\hat{A}_{L}=\prod_{l \in L} \sigma_{l}^{z}, \quad L=L_{1}, \quad \text { or } L_{2}
$$

Possible eigenvalues:

$$
a_{L_{1}}= \pm 1, \quad a_{L_{2}}= \pm 1
$$

Any plaquette cuts L_{1} and L_{2} either 0 or L times,
ie. flips an even number of spins, hence $\left[\hat{B}_{p}, \hat{A}_{L}\right]=0 ;\left[\hat{A}_{S}, \hat{A}_{l}\right]=0$

$$
\left[H, \hat{A}_{c}\right]=0
$$

So, ground states) are also characterized by their $\quad a_{L}$-eigenvalues:

$$
\begin{aligned}
& \hat{A}_{L_{1}}\left|g_{1} a_{L_{1}}, a_{L_{2}}\right\rangle=a_{L_{1}}\left|g_{1} a_{L_{1}}, a_{L 2}\right\rangle, \quad \hat{A}_{L_{2}}\left|g_{1} a_{L_{1}}, a_{L 2}\right\rangle=a_{L_{2}}\left|g_{1} a_{L_{1}}, a_{L 2}\right\rangle \\
& \Rightarrow \text { there are } 4 \text { degenerate ground states } \Rightarrow \text { topological property! }
\end{aligned}
$$

Consider square lattice, spin 1 on every site:

$|R A L\rangle=$ (equal-weight superposition of all fully packed AKLT loop coverings) [Yao2010]

- Loops don't touch (each site is visited by exactly one loop)
- Each loop is a periodic AKLT-type state

PEPS representation: [Li2014]

- introduce four auxiliary sites per physical site, $\quad|\alpha \beta \gamma \delta\rangle_{l}=|\alpha\rangle_{l}^{2}|\beta\rangle_{l}^{u}\langle\delta\rangle_{l}^{d}|\delta\rangle_{l}^{j}$ each in one of the states $|\alpha\rangle \in\left\{\begin{array}{l}\left\{\begin{array}{l}|e\rangle, \\ \text { empty }\end{array}|\uparrow\rangle, \underset{\text { up }}{ }|\downarrow\rangle\right\}\end{array}\right.$

($D=3$)
form auxiliary spin -1/2
- define 'entangled pairs' using adjacent auxiliary sites from nearest neighbors of given site:

$$
\begin{gathered}
|E P\rangle_{\left\langle l^{\prime} \ell^{\prime}\right\rangle}=\underbrace{\frac{1}{\sqrt{2}}\left(\left|\uparrow_{\ell^{\prime} \ell_{\ell^{\prime}}}\right\rangle-\left|\downarrow_{\ell^{\prime}} \uparrow_{\ell^{\prime}}\right\rangle\right)}_{V B}+\underbrace{\mid e_{\ell^{\prime}}^{\left.e_{\ell^{\prime}}\right\rangle}} \quad \begin{array}{c}
\text { equal-weight superposition } \\
\text { of VB or no-VB on bond } \\
\text { (same as for RVB) }
\end{array}
\end{gathered}
$$

- impose constraint: allow only two auxiliary spin-1/2 per physical site, combined to form physical spin-1:

[two edges are bound into a spin-1, other two are 'empty']

$$
\equiv \sum_{\sigma_{l}} \sum_{\alpha \beta \gamma \delta} A_{\alpha \beta \gamma \delta}^{\sigma_{l}}\left|\sigma_{l}\right\rangle\langle\alpha \beta \gamma \delta|
$$

PEPS form for RAL state:

