PEPS-I.1

PEPS 1: Projected Entangled Pair States

(Verstraete, Cirac, 2004)
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[He2016] (2D Kagome)

[Zheng2017] (recent high-end application: striped order in 2D Hubbard model)

1. Motivation & Definition of PEPS

Goal: generalize MPS ideas to 2 dimension!
Most obvious idea: 2D-DMRG, using a 'snake-MPS":
[White1996] (2D Heisenberg, nn & nnn interactions)

2D-DMRG is one of the most powerful/accurate methods for studying 2D quantum lattice models.
Main limitation: not enough entanglement: entanglement entropy SAg ~ 0 / L.z _D>
but according to area law, we need 546 ~ Nx = D ~ Z.N

Reason for insufficiency: entanglement between A and & is encoded in a single bond.

Natural generalization: add more bonds between rows! This leads to PEP‘S Ans?_tz [Vegrstraete2004]:
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Introduce 5-leg tensor for every site: Gy 6,
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Sum over all virtual bonds linking neighboring sites: &

7l physical basis: |6—’ D s [ ‘
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contraction pattern: ﬁ Ar F) P % ¢ ﬂ (2}
: 0 0) . LM. ]F o2’y ys Ate in [ﬂh 9.
Variationally minimize (zpl[:i(lh . # of variational parameters: (9( dp - Ny Nj)
”y"”b
s d
Why the name 'PEPS'? Verstraete & Cirac envisioned generalization of AKLT construction:
3 w A,
Associate 4 'auxiliary particles' with each site: I,LP“) ﬁ.ﬁ.ﬁ = | P;@(PQDI,)”‘DB)
] 3‘ Ll
Construct entangled pairs along bonds: [EP) Z l\‘> § (]
2,e’ L L L0
Define projectors on each site: Pl ¢ = (G‘)L 2 ﬂ fe.e] ;56;3( ]‘S“ s
N
Then \ ) = Tr P Tr EF 1 anl
t[/ ®Ltl ! @(elcl'é-lgo 7&3,&
r—‘"“‘j — 1 _.
l€> 1 ‘U 7 ﬂ - 0-’ . ———T ~ 13!
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=% generates a X‘-contraction
between two A-tensors

General remarks: [Orus2014, Sec. 5.2]

{
- PEPS are'dense: any 2D state can be written as a PEPS, though possibly with exponentially large D

D2 If no truncations are performed:
D\ th = 0( D/DL = D& .D? = Dwﬁ% = P;a“‘?:’) J& (6)
d in-dimension out-dimension /3 1 £ 34 ‘

- 2D area law is satisfied: S j5a ~ O( L\z®>
- PEPS can handle polynomially-decaying correlations (in contrast to 1D MPS)

o - 4
- Exact contraction is #P hard, => contractiontime ~ (& ris )

#P-hard class of problems = count number of solutions of NP-complete problems
NP-complete class = problems that cannot be solved in polynomial time

'non-deterministic polynomial'

Why are exact contractions hard? Recall 1D situation:

open indices: 3 & i s just keeps growing...

Cheap contraction pattern: Expensive contraction pattern:
\ ) ST |
Y - -
# of open indices # of open indices
cost: O(DZ'O') . cost: O(p(sz-D3 J
0(-:0) § ~ O(dD ) old®p-0) | O(d"p)
D (D4P) ol'd v )
A
Moreover, if canonical form is used, A > A LI with {I = Eﬂ D = },{1
T1 1 107 .
At g 3
i ; o
T _
then contraction costs are very small: 20 [ - (g)
A ct
In 2D, growth of # of open indices is unavoidable: ? / \l
L/

- Contraction costs would become manageable if a 'canonical form' were available!

But this has not been explored systematically until recently.

- 'No exact canonical form exists' [Orus2014, Sec. 5.2] (but this claim might be outdated...)

- Restrictions to canonical forms are possible and probably useful. [Zaletel2019], [Hagshenas2019]
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2. Example: RVB state PEPS-1.2

S~

Resonating valence bond (RVB) states are of continued
interest for constructing spin liquids.
[Anderson1987], [Rokhsar1988] (high-Tc context)

Canonical example: spin-1/2 Heisenberg model on square lattice

'Dimer' or 'valence bond':
] z {
= - AN A - 26y -1, 1) ()
{

[sign conventions for bonds are needed and important]

- AL
RVB state: |RV @5 = (equal su erposition of all possible dimer coverings of lattice) (2)

[}
VB quctuations’ lower energy due to

[., — n P — Pr—

| 11 LT

Hamiltonian matrix elements ) l 4 ,

connecting different configurations. I i ) ’ )

Ch Y () + o —

RVB state has a PEPS representation [Verstraete2004d], [Verstraete2006]

Defining properties of RVB state:

- each vertex has precisely one dimer attached to it, ':Tl m

so it can be involved in one of four possible states: T

- introduce four auxiliary sites per physical site, [ o(Mg ) f ,{

QU

)

5
each in one of the states |0<> & i ‘C)l |T> \Dg «
'lempty' up  down (D=3 )
- define 'entangled pairs' using adjacent auxiliary sites from nearest neighbors:
L .
IEP) Tk ( \T\L J,‘.? - “’L 1",>> v \ e, Cl'> equal-weight superposition ©
(ﬂ/“ - , of VB or no-VB on bond

VB no VB - : .
i—l-._o-l?- £ (1,,,/]) is 2D index

- impose constraint: allow only one auxiliary spin-1/2 per physical site, and identify it with physical spin:

+ -

Projector on site /) : (5 = Z ‘6'L> (é«ecc | x g(esee| & gleese| x(gee,{l)

%=1

VB points left d ight
physical spin points le up own rig @

= % %‘\g ﬂi@(”“ § \ o, Y& J%{g | (no arrow convention I;eire)

6

< s 5
only nonzero elements of A -tensor: A Feee = Recee = Aeege = A ceeq )
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g “Pue L A

S
only nonzero elements of [ -tensor: A feee = B ecee = ﬂi,,a = Qf“o- @
PEPS form for RVB state: By = Té € = T
orm for RVB state |RY ), Trq m 1 01 Z\o},) ]I'QW'] Q)
Wl " ©<e, X, e u
all sites

all nearest neighbor pairs 20"

Advantages of PEPS description of RBV state

- Dimer basis is hard to work with, since individual components are not orthogonal: @ (@@> Tt

Therefore, explicit computations are easier in PEPS framework!

- PEPS description can be extended to larger class of states, e.g. including longer-ranged bonds [Wang2013]

- 'Parent Hamiltonian' (for which RVB state is exact ground state) can be constructed systematically,

but it is complicated: 19-site interaction [Schuch2012], 12-site interaction [Zhou2014]
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3. Example: Kitaev's Toric Code [Kitaev2003], [Kitaev2009] PEPS-1.3
T__ easy toread!

Simplest known model whose ground state displays topological order. Ground state on torus is
four-fold degenerate, hence it can be used to define a 'topologically protected qubit'.

- Square lattice (on 2D plane, or on torus) AD - L
- Spin 1/2 on each edge Ts»0, Je>eo
[al A a G)
']“I = —'—JS;AS -‘SC% BT Od S
’5 D
sum over all stars sum over all plaquettes (1)

o " spins live on 'edges' of square lattice
- A _ A index {, labels edges
- A, = gt g =Tg/f
&

,eestar(: ) Py plaquette(p )

[note: Kitaev uses é‘ * for stars, &3 for plaquettes]

All terms in Hamiltonian commute e

Easy to check: [A5/ &f 1 =0 forall s o G

because all stars and plaquettes share an even number of edges ( or );

At N ~
hence minus signs from &, 65 =~6&rgt cancel: (=1) = C0) = [ @)
? L Lt
As %J = &PAS
A ~
- Alltermsin  H commute =2 W  should be solvable!
3
- Adopt eigenbasis of G'e : with eigenstates l6l> 5‘ =t )
A A t
- Star operator, A, = T ¢ ®
Je star(s) QS:.(»( ‘ + i € -,*;“
PG { -
has eigenvalues a4 = 1 'star flux’ @ + -
If Qg = —¢ , there is a 'vortex' on star : (%) ~ r’ . -1 4
QS == + -
Ground state of toric code
- Due to (3), ground state must be an eigenstate of every A éP 4)
’ /
A A
= = B ‘ 7 = (
ﬂs\%? 04‘67, L Qr 37 forall s o
A\ A
- ground state must maximize energy of all A BP terms, = lg= {OP = Yoo (B
Note: (g = | => all up, or all dewn, or two wg, two dewn, on every star (1Y

F - + - T
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Note: (g = | => all ug, or all deWn, or two wg, two dewn, on every star (1Y
F - -
+ -
Graphical notation: —— e —_——— = — (2)

Allowed configurations: + ‘} [[ F :
Forbidden configurations: = —— _r——._. ‘| ‘« _ +

=

=

ground state is 'vortex free', i.e. it contains only closed loops of red edge lines
\35 = 2. C" i (13)
all closed loops
Tl {5 ag(g) =1 s 3
A
B flips all spins on plaquette, hence maps 'allowed configuration' to 'allowed configuration'.

4

N (9,10)
Since | 5 sums over all allowed configurations, the condition B_l4) = [ D
P

A
can be satisfied provided that states connected by 3‘, have same amplitude:

" = =>(
if B | 3y = |70 then CY = ¢°® (1)
'd

=»  Along each 'orbit' of the action of plaquette operators, all coefficients must be equal:

L | - Ll 4 _
ot - _— ‘/ + _ _— (lf)

+ R ", 4
(= ¥ ¥

Toric code on plane

Spin

flips of plaquette operator are 'ergodic’, i.e. any closed loop &Y can be mapped to any other l&"}

closed loop by a series of plaquette operators. Hence, all C,a‘ must be equal:

PEPS representation: [Verstraete2006]

the local variable

6

\’6 7 = Z \g) equal-weight superposition of (16)
all closed loops all closed-loop configurations

¢ b

| 6 | is represented by b| P C X! |D
s> & 4
4 | | PR ' I SR § |

A

:t]
v
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tne |ocal varianie | pe | is represented by bl p C . |D ,
- ’
wetpees o/
with D=t
p2 C o _ S g c [on each edge: set both auxiliary (18)
/ T ope re indices equal to physical index]
<
k g < F N M =0 weod (4) [on each vertex:
" D y - enforce closed-loop (%)
y 0D otherwise condition]

Summing over all %(5 ‘@/A on each vertex generates all possible loop orderings!

\%) = Z (6:) T{CZ’; T|‘ :D[ﬂ [contraction of all auxiliary bonds implied] (2.0)
0—: S

PEPS formulation is generalizable to all 'string-net' models', [Gu2009]
which realize all non-chiral topological order in 2+1 dimensions. [Buerschaper2009]

Excitations on plane

Excitations come in two varieties: (i) 'electric charges', (iii) 'magnetic vortices'.

A

(i) Define 'electric path operator’, EL = a0 LX @) I
leL
with /. = path from S tos ., “ hs"’_
¢
s g 4y S L
Then [ E, #& ] =0 (since both are built only from &) y )
L,”e
(2
A A A a g = S or 52 [star flips only one spin on path]
E Q =t s T for (zs)
L™s + L otherwise [star flips two or zero spins on path]
So, star operatPr creates two 'charges’, at S and S, , each having energy 2 TS . (24
L4
EL ,37 Loa, M 2 Te
A Al
(i) Define 'magnetic path operator’, ML.* = Ve, @s)
" Let*
with /" = path on 'dual lattice' from P to Pr f:
° a A S

Then [ ] = since both are built only from ¢ #

A A -5 = P or p, [plaquette flips only one spin on path]

M ﬂ-% = 4 &? Mﬁl for P _ ¢ (23)

T otherwise [plaquette flips two or zero spins on path]

CA nlaAiiAHA AnAvabkAr ArAnbAc FaiA hrAavki~cAR! AF M ~anA - AnAh lhAvinAa AlArA 27T 7 _-\
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So, plaquette operator creates two 'vortices', at 'P, and P each having energy Z:(' ) (28)
é

Toric code on torus L,

Let L. and L. be 'global loops'
wrapping around surface of torus,

along the spin locations (i.e. between edges)

For given L, and Ll , define the 'global loop operators'

Py L g - g .
— 1 = L ] 4 ° q
HL = 0 8 , L Lo orls [ ... <=t
AGL [ -
Possible eigenvalues: C{L' = &y ) ah =4y . 0 . “ d‘. . 0 . | .
Gy

Any plaquette cuts L{ and L, either O or T times,

A 4}
i.e. flips an even number of spins, hence [ 4 A ] = O
P, 'L

~
/-at—_)
D
wv

D
~—

\t

[

So, ground state(s) are also characterized by their @ L-eigenvalues:

A

A 150,00 = @ NG, 80, 2 ALL“)'%*'C‘“)

]

0, \G, e

=> thereare [ degenerate ground states = topological property!

19-lecture-PEPS-I-DefinitionExamples Page 8



4. Example: Resonating AKLT loop state (RAL)

PEPS-1.4
Consider square lattice, spin 1 on every site:
IRALY =

S#1,
(equal-weight superposition of all fully packed AKLT loop coverings)

[Yao2010]
- Loops don't touch (each site is visited by exactly one loop)

- Each loop is a periodic AKLT-type state

PEPS representation: [Li2014]

- introduce four auxiliary sites per physical site,

1 % d & R
lx’SK(S >£ = \MZ\P}‘Q\% o, f,co
each in one of the states [0 ) & % ie)l 112 14 g {
empty up down (D= 13)
form auxiliary spin-1/2
- define 'entangled pairs' using adjacent auxiliary sites from nearest neighbors of given site: @
{
[El’) = J"{( \Tl'l'ﬂ'7 - H, T,>> r \et c£,> equal-weight superposition
d,ﬁ‘) g___w#_, of VB or no-VB on bond
+_..|_ VB no VB
4 q

(same as for RVB)
- impose constraint: allow only two auxiliary spin-1/2 per physical site, combined to form physical spin-1:
. —+ —+ -

Projector onsite [ : ¥, = \ IQ,> (£<ee, | +£(e1‘e-1‘\ + Z(TQ el «

)

Clebsch-Gordan

t R \Og,> (I‘(e.e—ﬂv\ + glefed | + 2<Teel.l r

\“‘z> ()e(edlv\ + gleted | ﬂ(,l,eel-l %

)

[two edges are bound into a spin-1, other two are 'empty']

agrs  “EeS |5 2 pTs]

A
PEPS form for RAL state: \KQL> = ge 1>Z g(t e%E?)”, = Z \q:"b ]Ivﬂw,]
_ - ey Cge!
all sites

all nearest neighbor pairs X;L‘
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